ETFT: Equiangular Tight Frame Transformer for Imbalanced Semantic Segmentation

被引:0
|
作者
Jeong, Seonggyun [1 ]
Heo, Yong Seok [1 ,2 ]
机构
[1] Ajou Univ, Dept Artificial Intelligence, Suwon 16499, South Korea
[2] Ajou Univ, Dept Elect & Comp Engn, Suwon 16499, South Korea
基金
新加坡国家研究基金会;
关键词
semantic segmentation; neural collapse; class imbalance; transformer;
D O I
10.3390/s24216913
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Semantic segmentation often suffers from class imbalance, where the label ratio for each class in the dataset is not uniform. Recent studies have addressed the issue of class imbalance in semantic segmentation by leveraging the neural collapse phenomenon in conjunction with an Equiangular Tight Frame (ETF). While the use of ETF aids in enhancing the discriminability of minor classes, class correlation is another crucial factor that must be taken into account. However, managing the balance between class correlation and discrimination through neural collapse remains challenging, as these properties inherently conflict with one another. Moreover, this control is established during the training stage, resulting in a fixed classifier. There is no guarantee that this classifier will consistently perform well with different input images. To address this problem, we propose an Equiangular Tight Frame Transformer (ETFT), a transformer-based model that jointly processes the features and classifier using ETF structure, and dynamically generates the classifier as a function of the input for imbalanced semantic segmentation. Specifically, the classifier initialized with the ETF structure is jointly processed with the input patch tokens during the attention process. As a result, the transformed patch tokens, aided by the ETF structure, achieve discriminability between classes while preserving contextual correlation. The classifier, initially structured as an ETF, is adjusted to incorporate the correlation information, benefiting from the attention mechanism. Furthermore, the learned classifier is combined with the fixed ETF classifier, leveraging the advantages of both. Extensive experiments demonstrate that the proposed method outperforms state-of-the-art methods for imbalanced semantic segmentation on both the ADE20K and Cityscapes datasets.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] FeedFormer: Revisiting Transformer Decoder for Efficient Semantic Segmentation
    Shim, Jae-hun
    Yu, Hyunwoo
    Kong, Kyeongbo
    Kang, Suk-Ju
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 2, 2023, : 2263 - 2271
  • [32] Semantic segmentation feature fusion network based on transformer
    Li, Tianping
    Cui, Zhaotong
    Zhang, Hua
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [33] LNFormer: Lightweight Design for Nighttime Semantic Segmentation With Transformer
    Wei, Longsheng
    Liao, Yuhang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [34] SARFormer: Segmenting Anything Guided Transformer for semantic segmentation
    Zhang, Lixin
    Huang, Wenteng
    Fan, Bin
    NEUROCOMPUTING, 2025, 635
  • [35] Full-Scale Selective Transformer for Semantic Segmentation
    Lin, Fangjian
    Wu, Sitong
    Ma, Yizhe
    Tian, Shengwei
    COMPUTER VISION - ACCV 2022, PT VII, 2023, 13847 : 310 - 326
  • [36] Indoor semantic segmentation based on Swin-Transformer
    Zheng, Yunping
    Xu, Yuan
    Shu, Shiqiang
    Sarem, Mudar
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 98
  • [37] TransKD: Transformer Knowledge Distillation for Efficient Semantic Segmentation
    Liu, Ruiping
    Yang, Kailun
    Roitberg, Alina
    Zhang, Jiaming
    Peng, Kunyu
    Liu, Huayao
    Wang, Yaonan
    Stiefelhagen, Rainer
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (12) : 20933 - 20949
  • [38] Efficient and adaptive semantic segmentation network based on Transformer
    Zhang H.-B.
    Cai L.
    Ren J.-P.
    Wang R.-Y.
    Liu F.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2023, 57 (06): : 1205 - 1214
  • [39] A Patch Diversity Transformer for Domain Generalized Semantic Segmentation
    He, Pei
    Jiao, Licheng
    Shang, Ronghua
    Liu, Xu
    Liu, Fang
    Yang, Shuyuan
    Zhang, Xiangrong
    Wang, Shuang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (10) : 14138 - 14150
  • [40] OPTIMIZATION OF NON-UNIFORM SENSOR PLACEMENT FOR BLADE TIP TIMING BASED ON EQUIANGULAR TIGHT FRAME THEORY
    Zhang, Zhiwei
    Chai, Pengfei
    Chen, Yong
    Tian, Jie
    Ouyang, Hua
    PROCEEDINGS OF ASME TURBO EXPO 2021: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, VOL 9B, 2021,