The most significant soil parameters that are utilized in geotechnical engineering projects' design and implementations are soil strength parameters including friction (phi), cohesion (c), and uniaxial compressive strength (UCS). Understanding soil shear strength parameters can be guaranteed the design success and stability of structures. In this regard, professionals always looking for ways to get more accurate estimations. The presented study attempted to investigate soil shear strength parameters by using multivariate regression and multilayer perceptron predictive models which were implemented on 100 specimens' data collected from the Tabriz region (NW of Iran). The uniaxial (UCS), liquid limit (LL), plasticity index (PI), density (gamma), percentage of fine-grains (pass #200), and sand (pass #4) which are used as input parameters of analysis and shear strength parameters predictions. A confusion matrix was used to validate the testing and training data which is controlled by the coefficient of determination (R2), mean absolute (MAE), mean squared (MSE), and root mean square (RMSE) errors. The results of this study indicated that MLP is able to predict the soil shear strength parameters with an accuracy of about 93.00% and precision of about 93.5%. In the meantime, the estimated error rate is MAE = 2.0231, MSE = 2.0131, and RMSE = 2.2030. Additionally, R2 is evaluated for predicted and measured values correlation for friction angle, cohesion, and UCS are 0.914, 0.975, and 0.964 in the training dataset which is considerable.