High-Selectivity CO2 Mixture Separations by a Guanylated Polymer of Intrinsic Microporosity (PIM-G) Membrane

被引:1
|
作者
Kaser, Samuel J. [1 ,3 ]
Dean, Pablo [2 ]
Jean-Baptiste, Philippe [2 ]
Mattewal, Simar Kaur [2 ]
Joo, Taigyu [2 ,4 ]
Yeo, Jing Ying [2 ]
Smith, Zachary P. [2 ]
机构
[1] MIT, Dept Chem, Cambridge, MA 02139 USA
[2] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[3] Sora Fuel Corp, 750 Main St, Cambridge, MA 02139 USA
[4] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
IONIC LIQUIDS; GAS; DIFFUSION; CAPTURE; PERMEABILITY; TRANSPORT; CO2/CH4;
D O I
10.1021/acs.macromol.4c01434
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Membrane technology has the potential to replace thermal methods for gas separation, resulting in significant energy savings. However, materials with better combinations of permeability and selectivity are needed to fulfill industrial requirements. In this work, we functionalize a polymer of intrinsic microporosity with a high CO2 affinity guanidinium moiety to produce a highly CO2-permselective ionic polymer (PIM-G). Permeability-selectivity performance is compared under pure- and mixed-gas conditions for CO2/CH4, CO2/N2, and CO2/O2 gas pairs. In addition, counteranion identities are modified along the halide series (F-, Cl-, Br-, and I-) to optimize separation performance, with larger halides found to improve the CO2 permselectivity without a commensurate drop in the CO2 permeability.
引用
收藏
页码:10023 / 10031
页数:9
相关论文
共 50 条
  • [21] Recent progress in PIM-1 based membranes for sustainable CO2 separations: Polymer structure manipulation and mixed matrix membrane design
    He, Shanshan
    Zhu, Bin
    Li, Songwei
    Zhang, Yanqiu
    Jiang, Xu
    Lau, Cher Hon
    Shao, Lu
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 284
  • [22] Advances in high permeability polymeric membrane materials for CO2 separations
    Du, Naiying
    Park, Ho Bum
    Dal-Cin, Mauro M.
    Guiver, Michael D.
    ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (06) : 7306 - 7322
  • [23] Enhanced CO2 selectivities by incorporating CO2-philic PEG-POSS into polymers of intrinsic microporosity membrane
    Yang, Leixin
    Tian, Zhizhang
    Zhang, Xiyuan
    Wu, Xingyu
    Wu, Yingzhen
    Wang, Yanan
    Peng, Dongdong
    Wang, Shaofei
    Wu, Hong
    Jiang, Zhongyi
    JOURNAL OF MEMBRANE SCIENCE, 2017, 543 : 69 - 78
  • [24] Carbonyl-linked cobalt polyphthalocyanines as high-selectivity catalyst for electrochemical CO2 reduction
    Jin, Haisen
    Di, Yajing
    Gu, Yueang
    Chen, Yu
    Dou, Meiling
    Zhang, Zhengping
    Wang, Feng
    CHEMICAL COMMUNICATIONS, 2024, 60 (13) : 1715 - 1718
  • [25] Polymer membrane captures CO2 at high temperatures
    不详
    CHEMICAL ENGINEERING PROGRESS, 2002, 98 (07) : 27 - 27
  • [26] Controlled Superacid-Catalyzed Self-Cross-Linked Polymer of Intrinsic Microporosity for High-Performance CO2 Separation
    Zhou, Shengyang
    Sun, Yuxuan
    Xue, Boxin
    Li, Shenghai
    Zheng, Jifu
    Zhang, Suobo
    MACROMOLECULES, 2020, 53 (18) : 7988 - 7996
  • [27] Highly carboxylate-functionalized polymers of intrinsic microporosity for superior CO2 selective gas separation membrane
    Jeon, Jun Woo
    Kim, Dong-Gyun
    Yoo, Youngjae
    Kim, Yong Seok
    Lee, Jong-Chan
    Kim, Byoung
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [28] A PRINTABLE CONDUCTIVE POLYMER CO2 SENSOR WITH HIGH SELECTIVITY TO HUMIDITY
    Chuang, Wen-Yu
    Wu, Chun-Chang
    Lu, Shey-Shi
    Lin, Chih-Ting
    2017 19TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS (TRANSDUCERS), 2017, : 1501 - 1503
  • [29] High-Pressure CO2 Sorption in Polymers of Intrinsic Microporosity under Ultrathin Film Confinement
    Ogieglo, Wojciech
    Ghanem, Bader
    Ma, Xiaohua
    Wessling, Matthias
    Pinnau, Ingo
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (13) : 11369 - 11376
  • [30] Layer- by- layer assembly of a polymer of intrinsic microporosity: targeting the CO2/ N2 separation problem
    Pramanik, Nabendu B.
    Regen, Steven L.
    CHEMICAL COMMUNICATIONS, 2019, 55 (30) : 4347 - 4350