Zn symmetry broken supersolid in spin-orbit-coupled Bose-Einstein condensates

被引:0
|
作者
Guo, Ze-Hong [1 ,2 ]
Zhu, Qizhong [1 ,2 ]
机构
[1] South China Normal Univ, Guangdong Basic Res Ctr Excellence Struct & Fundam, Sch Phys,Minist Educ, Key Lab Atom & Subatom Struct & Quantum Control, Guangzhou 510006, Peoples R China
[2] South China Normal Univ, Frontier Res Inst Phys, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangdong Hong Kong Joint Lab Quantum Matter, Guangzhou 510006, Guangdong, Peoples R China
来源
NEW JOURNAL OF PHYSICS | 2024年 / 26卷 / 12期
基金
中国国家自然科学基金;
关键词
supersolid; spin-orbit coupled Bose-Einstein condensate; pseudo-Goldstone mode; PHASE;
D O I
10.1088/1367-2630/ad98b5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Supersolid is an exotic state of matter characterized by both superfluid properties and periodic particle density modulation, due to spontaneous breaking of U(1) gauge symmetry and spatial translation symmetry, respectively. For conventional supersolids, continuous translation symmetry breaking is accompanied by one gapless Goldstone mode in the excitation spectra. An interesting question naturally arises: what is the consequence of breaking discrete translation symmetry for supersolids? In this work, we study the consequence of discrete symmetry breaking in a Zn supersolid resulting from spontaneous breaking of a discrete Zn symmetry, or equivalently, a discrete translation symmetry. This Zn supersolid is realized in the stripe phase of spin-orbit-coupled Bose-Einstein condensate under an external periodic potential with period 1/n of intrinsic stripe period. For n >= 2, there are n degenerate ground states with spontaneously broken lattice translation symmetry. The low-energy excitations of Zn supersolid include a pseudo-Goldstone mode, whose excitation gap at long wavelength limit is found to decrease rapidly with n. We further numerically show that, when confined in a harmonic trap, a spin-dependent perturbation can result in the transition between degenerate ground states of Zn supersolid. With the integer n tunable using the experimental technique of generating subwavelength optical lattice, the Zn supersolid proposed here offers a cold atom platform to simulate physics related with generic Zn symmetry breaking in a highly controllable setting.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Stationary states of trapped spin-orbit-coupled Bose-Einstein condensates
    Ruokokoski, E.
    Huhtamaki, J. A. M.
    Mottonen, M.
    PHYSICAL REVIEW A, 2012, 86 (05):
  • [32] Patterning by dynamically unstable spin-orbit-coupled Bose-Einstein condensates
    Zhai, Yunjia
    Zhang, Yongping
    CHAOS SOLITONS & FRACTALS, 2023, 174
  • [33] Spin-orbit-coupled Bose-Einstein condensates of rotating polar molecules
    Deng, Y.
    You, L.
    Yi, S.
    PHYSICAL REVIEW A, 2018, 97 (05)
  • [34] Josephson physics of spin-orbit-coupled elongated Bose-Einstein condensates
    Garcia-March, M. A.
    Mazzarella, G.
    Dell'Anna, L.
    Julia-Diaz, B.
    Salasnich, L.
    Polls, A.
    PHYSICAL REVIEW A, 2014, 89 (06):
  • [35] Soliton magnetization dynamics in spin-orbit-coupled Bose-Einstein condensates
    Fialko, O.
    Brand, J.
    Zuelicke, U.
    PHYSICAL REVIEW A, 2012, 85 (05):
  • [36] Vortex force in compressible spin-orbit-coupled Bose-Einstein condensates
    Toikka, L. A.
    PHYSICAL REVIEW A, 2017, 96 (03)
  • [37] Creating moving gap solitons in spin-orbit-coupled Bose-Einstein condensates
    Su, Jin
    Lyu, Hao
    Chen, Yuanyuan
    Zhang, Yongping
    PHYSICAL REVIEW A, 2021, 104 (04)
  • [38] Spin-Mixing Dynamics in Helicoidal Spin-Orbit-Coupled Bose-Einstein Condensates
    Sekh, Golam Ali
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2025, 218 (3-4) : 213 - 223
  • [39] Bessel vortices in spin-orbit-coupled spin-1 Bose-Einstein condensates
    Li, Jun -Zhu
    Luo, Huan-Bo
    Li, Lu
    PHYSICAL REVIEW A, 2022, 106 (06)
  • [40] Spin-Orbit-Coupled Interferometry with Ring-Trapped Bose-Einstein Condensates
    Helm, J. L.
    Billam, T. P.
    Rakonjac, A.
    Cornish, S. L.
    Gardiner, S. A.
    PHYSICAL REVIEW LETTERS, 2018, 120 (06)