Current Status and Applications of Genome-Scale Metabolic Models of Oleaginous Microorganisms

被引:0
|
作者
Hu, Zijian [1 ]
Qian, Jinyi [1 ]
Wang, Yuzhou [1 ]
Ye, Chao [1 ,2 ]
机构
[1] Nanjing Normal Univ, Sch Food Sci & Pharmaceut Engn, Nanjing, Peoples R China
[2] Nanjing Normal Univ, Minist Educ, Key Lab NSLSCS, Nanjing, Peoples R China
来源
FOOD BIOENGINEERING | 2024年 / 3卷 / 04期
基金
中国国家自然科学基金;
关键词
cell phenotype; genome-scale metabolic network model; lipid production; metabolic engineering; oleaginous microorganisms; FLUX BALANCE ANALYSIS; LIPID-ACCUMULATION; HETEROTROPHIC GROWTH; CARBON METABOLISM; NETWORK; RECONSTRUCTION; YEAST; VALIDATION; PREDICTION; RESOURCE;
D O I
10.1002/fbe2.12113
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Oleaginous microorganisms have the unique ability to accumulate lipids that can exceed 20% of their dry cell weight under certain conditions. Despite their potential for efficient lipid production, the metabolic pathways involved are not yet fully understood, largely due to the complexity of intracellular processes and the challenges in phenotypic prediction. This review synthesizes the latest research on the application of Genome-scale Metabolic Network Models (GSMMs) to study oleaginous microorganisms, including bacteria, cyanobacteria, yeast, microalgae, and fungi, and provides a comprehensive analysis of how GSMMs have been utilized to decipher the metabolic mechanisms behind lipid accumulation and to identify key genes involved in lipid synthesis. The review highlights the role of GSMMs in predicting cellular behavior, optimizing metabolic engineering strategies, and discusses the future directions and potential of GSMMs in enhancing lipid production in microorganisms. This comprehensive overview not only summarizes the current state of research but also identifies gaps and opportunities for further investigation in the field.
引用
收藏
页码:492 / 511
页数:20
相关论文
共 50 条
  • [41] A systematic assessment of current genome-scale metabolic reconstruction tools
    Sebastián N. Mendoza
    Brett G. Olivier
    Douwe Molenaar
    Bas Teusink
    Genome Biology, 20
  • [42] Cyanobacterial genome-scale carbon mapping models for genome-scale 13C-metabolic flux elucidation
    Gopalakrishnan, Saratram
    Maranas, Costas
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [43] Genome-scale metabolic networks
    Terzer, Marco
    Maynard, Nathaniel D.
    Covert, Markus W.
    Stelling, Joerg
    WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE, 2009, 1 (03) : 285 - 297
  • [44] A systematic assessment of current genome-scale metabolic reconstruction tools
    Mendoza, Sebastian N.
    Olivier, Brett G.
    Molenaar, Douwe
    Teusink, Bas
    GENOME BIOLOGY, 2019, 20 (01)
  • [45] Advances in genome-scale metabolic models of industrially important fungi
    Han, Yichao
    Rangel, Albert Tafur
    Pomraning, Kyle R.
    Kerkhoven, Eduard J.
    Kim, Joonhoon
    CURRENT OPINION IN BIOTECHNOLOGY, 2023, 84
  • [46] Defining the nutritional input for genome-scale metabolic models: A roadmap
    Marinos, Georgios
    Kaleta, Christoph
    Waschina, Silvio
    PLOS ONE, 2020, 15 (08):
  • [47] Next-generation genome-scale models for metabolic engineering
    King, Zachary A.
    Lloyd, Colton J.
    Feist, Adam M.
    Palsson, Bernhard O.
    CURRENT OPINION IN BIOTECHNOLOGY, 2015, 35 : 23 - 29
  • [48] MetaboTools: A Comprehensive Toolbox for Analysis of Genome-Scale Metabolic Models
    Aurich, Maike K.
    Fleming, Ronan M. T.
    Thiele, Ines
    FRONTIERS IN PHYSIOLOGY, 2016, 7
  • [49] Applicatons of Genome-Scale Metabolic Models in Biotechnology and Systems Medicine
    Zhang, Cheng
    Hua, Qiang
    FRONTIERS IN PHYSIOLOGY, 2016, 6
  • [50] MapMaker and PathTracer for tracking carbon in genome-scale metabolic models
    Tervo, Christopher J.
    Reed, Jennifer L.
    BIOTECHNOLOGY JOURNAL, 2016, 11 (05) : 648 - 661