Operator-Based Triboelectric Nanogenerator Power Management and Output Voltage Control

被引:1
|
作者
Liu, Chengyao [1 ]
Shimane, Ryusei [1 ]
Deng, Mingcong [1 ]
机构
[1] Tokyo Univ Agr & Technol, Dept Elect & Elect Engn, 2-24-16 Nakacho, Tokyo 1848588, Japan
关键词
triboelectric nanogenerator; circuit model; power management; operator theory; robust right coprime factorization; PWM CONVERTERS;
D O I
10.3390/mi15091114
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this paper, an operator-based voltage control method for TENGs is investigated, achieving output voltage tracking without compensators and uncertainty suppression using robust right coprime factorization. Initially, a comprehensive simulation-capable circuit model for TENGs is developed, integrating their open-circuit voltage and variable capacitance characteristics. This model is implemented to simulate the behavior of TENGs with a rectifier bridge and capacitive load. To address the high-voltage, low-current pulsating nature of TENG outputs, a storage capacitor switching model is designed to effectively transfer the pulsating energy. This switching model is directly connected to a buck converter and operates under a unified control strategy. A complete TENG power management system was established based on this model, incorporating an operator theory-based control strategy. This strategy ensures steady output voltage under varying load conditions without using compensators, thereby reducing disturbances. Simulation results validate the feasibility of the proposed TENG system and the efficacy of the control strategy, providing a robust framework for optimizing TENG energy harvesting and management systems with significant potential for practical applications.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] High-voltage output triboelectric nanogenerator with DC/AC optimal combination method
    Wang, Yuqi
    Huang, Tian
    Gao, Qi
    Li, Jianping
    Wen, Jianming
    Wang, Zhong Lin
    Cheng, Tinghai
    NANO RESEARCH, 2022, 15 (04) : 3239 - 3245
  • [22] Recent progress of triboelectric nanogenerator-based power management and information processing circuit
    Zhou, Y.
    Zhang, P.
    Li, J.
    Mao, X.
    MATERIALS TODAY SUSTAINABILITY, 2023, 23
  • [23] High-voltage output triboelectric nanogenerator with DC/AC optimal combination method
    Yuqi Wang
    Tian Huang
    Qi Gao
    Jianping Li
    Jianming Wen
    Zhong Lin Wang
    Tinghai Cheng
    Nano Research, 2022, 15 : 3239 - 3245
  • [24] Ag-Cellulose Hybrid Filler for Boosting the Power Output of a Triboelectric Nanogenerator
    Chenkhunthod, Supakit
    Yamklang, Wimonsiri
    Kaeochana, Walailak
    Prada, Teerayut
    Bunriw, Weeraya
    Harnchana, Viyada
    POLYMERS, 2023, 15 (05)
  • [25] Boosting power output of flutter-driven triboelectric nanogenerator by flexible flagpole
    Zhang, Yi
    Fu, Sau-Chung
    Chan, Ka Chung
    Shin, Dong-Myeong
    Chao, Christopher Y. H.
    NANO ENERGY, 2021, 88
  • [26] High output power density owing to enhanced charge transfer in ZnO-based triboelectric nanogenerator
    Ajimsha, R. S.
    Mahapatra, Abhinav
    Das, A. K.
    Sahu, V. K.
    Misra, P.
    ENERGY, 2023, 263
  • [27] Effect of Polytetrafluoroethylene Doping on the Output Performance of Elastic Based Triboelectric Nanogenerator
    Gao X.
    Guo F.
    Chen B.
    Xing F.
    Sun W.
    Gao W.
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2024, 40 (01): : 131 - 141
  • [28] Operator-based MPPT control system for thermoelectric generation by measuring the open-circuit voltage
    Suzuki, Kei
    Deng, Mingcong
    2016 INTERNATIONAL CONFERENCE ON ADVANCED MECHATRONIC SYSTEMS (ICAMECHS), 2016, : 236 - 241
  • [29] A Novel High Voltage SBS/PVDF based Flexible Triboelectric Nanogenerator
    Zhang, X.
    He, D.
    Emani, H.
    Panahi, M.
    Masihi, S.
    Maddipatla, D.
    Yang, Q.
    Atashbar, M. Z.
    2022 IEEE INTERNATIONAL CONFERENCE ON FLEXIBLE AND PRINTABLE SENSORS AND SYSTEMS (IEEE FLEPS 2022), 2022,
  • [30] High Efficiency Power Management and Charge Boosting Strategy for a Triboelectric Nanogenerator
    Cheng, Xiaoliang
    Miao, Liming
    Song, Yu
    Su, Zongming
    Chen, Haotian
    Chen, Xuexian
    Zhang, Jinxin
    Zhang, Haixia
    NANO ENERGY, 2017, 38 : 448 - 456