Highly Stretchable, Transparent, Solvent-Resistant Multifunctional Ionogel with Underwater Self-Healing and Adhesion for Wearable Strain Sensors and Barrier-Free Information Transfer

被引:2
|
作者
Peng, Hui [1 ]
Yang, Fan [1 ]
Tang, Ying [1 ]
Wang, Xin [1 ]
Li, Yue [1 ]
Xie, Pengyun [1 ]
Ma, Guofu [1 ]
Lei, Ziqiang [1 ]
机构
[1] Northwest Normal Univ, Coll Chem & Chem Engn, Key Lab Polymer Mat Gansu Prov, Key Lab Ecofunct Polymer Mat,Minist Educ, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
Fluorinated copolymer; Multifunctional ionogel; Underwater self-healing; Environmental tolerance; Flexible strain sensor;
D O I
10.1021/acsami.4c12841
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ionogels with excellent deformability, high ionic conductivity, and a sensitive stimulus response have been widely used and rapidly developed in flexible wearable systems. However, previously reported ionogels are mainly limited to atmospheric environments applications and have difficulty meeting the requirements of solvent-resistant, self-healing, and adhesion properties in underwater environments. Herein, a multifunctional ionogel capable of underwater applications is prepared by one-step photoinitiated polymerization of a fluorine-containing monomer (2,2,3,4,4,4-hexafluorobutyl acrylate, HFBA) and acrylic acid (AA) in a hydrophobic ionic liquid ([EMIM][TFSI]). The dynamic physical interactions of hydrogen bonds and ionic dipoles endow the ionogel with remarkable transparency, tunable mechanical properties, and underwater self-healing properties. Moreover, the fluoropolymer matrix offers high resistance to water and various solvents and exhibits strong underwater adhesion on different substrates. Thus, the sensor based on the ionogel exhibits excellent sensing properties, including high sensitivity, fast response, and superior durability. In particular, the ionogel can be used as a wearable underwater sensor to perform barrier-free information transfer. This study provides a design idea for the development of underwater flexible strain sensors.
引用
收藏
页码:54673 / 54684
页数:12
相关论文
共 15 条
  • [1] A Transparent, Highly Stretchable, Solvent-Resistant, Recyclable Multifunctional Ionogel with Underwater Self-Healing and Adhesion for Reliable Strain Sensors
    Xu, Liguo
    Huang, Zhenkai
    Deng, Zhishuang
    Du, Zhukang
    Sun, Tao Lin
    Guo, Zi-Hao
    Yue, Kan
    ADVANCED MATERIALS, 2021, 33 (51)
  • [2] Highly transparent, self-healing and adhesive wearable ionogel as strain and temperature sensor
    Tie, Jianfei
    Mao, Zhiping
    Zhang, Linping
    Zhong, Yi
    Sui, Xiaofeng
    Xu, Hong
    POLYMER CHEMISTRY, 2022, 13 (27) : 4064 - 4075
  • [3] Highly Transparent, Stretchable, and Self-Healable Ionogel for Multifunctional Sensors, Triboelectric Nanogenerator, and Wearable Fibrous Electronics
    Lijie Sun
    Hongfei Huang
    Qiyu Ding
    Yifan Guo
    Wei Sun
    Zhuangchun Wu
    Minglin Qin
    Qingbao Guan
    Zhengwei You
    Advanced Fiber Materials, 2022, 4 : 98 - 107
  • [4] Highly Transparent, Stretchable, and Self-Healable Ionogel for Multifunctional Sensors, Triboelectric Nanogenerator, and Wearable Fibrous Electronics
    Sun, Lijie
    Huang, Hongfei
    Ding, Qiyu
    Guo, Yifan
    Sun, Wei
    Wu, Zhuangchun
    Qin, Minglin
    Guan, Qingbao
    You, Zhengwei
    ADVANCED FIBER MATERIALS, 2022, 4 (01) : 98 - 107
  • [5] Stretchable Organohydrogel with Adhesion, Self-Healing, and Environment-Tolerance for Wearable Strain Sensors
    Zeng, Lingjun
    Gao, Guanghui
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (24) : 28993 - 29003
  • [6] Highly stretchable, strain-stiffening, self-healing ionic conductors for wearable sensors
    Huang, Zhenkai
    Deng, Zhishuang
    Liu, Xiang
    Huang, Tianrui
    Hu, Yongjing
    Chen, Yutong
    Liu, Yanhui
    Guo, Zi-Hao
    Yue, Kan
    CHEMICAL ENGINEERING JOURNAL, 2022, 449
  • [7] Transparent, Highly Stretchable, Self-Healing, Adhesive, Freezing-Tolerant, and Swelling-Resistant Multifunctional Hydrogels for Underwater Motion Detection and Information Transmission
    Zhang, Zeyu
    Yao, Aifang
    Raffa, Patrizio
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (49)
  • [8] A highly stretchable, self-healing, self-adhesive polyacrylic acid/chitosan multifunctional composite hydrogel for flexible strain sensors
    Lv, Rulong
    Cao, Xuan
    Zhang, Taoyi
    Ji, Wenxi
    Muhammad, Usman
    Chen, Jing
    Wei, Yun
    CARBOHYDRATE POLYMERS, 2025, 351
  • [9] Highly stretchable, self-healing, adhesive, 3D-printable and antibacterial double-network hydrogels for multifunctional wearable sensors
    Wei, Jinmei
    Liu, Chenglu
    Shi, Lin
    Liu, Yongping
    Lu, Huidan
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2025, 292
  • [10] Highly stretchable, self-healing, self-adhesive and conductive nanocomposite hydrogels based on multi-reversible interactions as multifunctional strain sensors
    Chen, Meijun
    Lei, Kun
    Guo, Pengshan
    Liu, Xin
    Zhao, Pengchao
    Han, Meng
    Cai, Bianyun
    Li, Guangda
    Li, Jinghua
    Cui, Jingqiang
    Wang, Xinling
    EUROPEAN POLYMER JOURNAL, 2023, 199