Category-Level Pose Estimation and Iterative Refinement for Monocular RGB-D Image

被引:0
|
作者
Bao, Yongtang [1 ]
Qi, Yutong [2 ]
Su, Chunjian [1 ]
Geng, Yanbing [3 ]
Li, Haojie [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Qingdao, Peoples R China
[2] Univ Toronto, Dept Comp & Math Sci, Scarborough, ON, Canada
[3] North Univ China, Sch Data Sci & Technol, Taiyuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; category-level pose estimation; scene understanding; transformer; TRANSFORMER;
D O I
10.1145/3695877
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Category-level pose estimation is proposed to predict the 6D pose of objects under a specific category and has wide applications in fields such as robotics, virtual reality, and autonomous driving. With the development of VR/AR technology, pose estimation has gradually become a research hotspot in 3D scene understanding. However, most methods fail to fully utilize geometric and color information to solve intra-class shape variations, which leads to inaccurate prediction results. To solve the above problems, we propose a novel pose estimation and iterative refinement network, use an attention mechanism to fuse multi-modal information to obtain color features after a coordinate transformation, and design iterative modules to ensure the accuracy of object geometric features. Specifically, we use an encoder-decoder architecture to implicitly generate a coarse-grained initial pose and refine it through an iterative refinement module. In addition, due to the differences between rotation and position estimation, we design a multi-head pose decoder that utilizes the local geometry and global features. Finally, we design a transformer-based coordinate transformation attention module to extract pose-sensitive features from RGB images and supervise color information by correlating point cloud features in different coordinate systems. We train and test our network on the synthetic dataset CAMERA25 and the real dataset REAL275. Experimental results show that our method achieves state-of-the-art performance on multiple evaluation metrics.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] i2c-net: Using Instance-Level Neural Networks for Monocular Category-Level 6D Pose Estimation
    Remus, Alberto
    D'Avella, Salvatore
    Di Felice, Francesco
    Tripicchio, Paolo
    Avizzano, Carlo Alberto
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (03) : 1515 - 1522
  • [32] RGB-D object pose estimation in unstructured environments
    Choi, Changhyun
    Christensen, Henrik I.
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2016, 75 : 595 - 613
  • [33] TG-Pose: Delving Into Topology and Geometry for Category-Level Object Pose Estimation
    Zhan, Yue
    Wang, Xin
    Nie, Lang
    Zhao, Yang
    Yang, Tangwen
    Ruan, Qiuqi
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 9749 - 9762
  • [34] SD-Pose: Structural Discrepancy Aware Category-Level 6D Object Pose Estimation
    Li, Guowei
    Zhu, Dongchen
    Zhang, Guanghui
    Shi, Wenjun
    Zhang, Tianyu
    Zhang, Xiaolin
    Li, Jiamao
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 5674 - 5683
  • [35] Synthetic Depth Image-Based Category-Level Object Pose Estimation With Effective Pose Decoupling and Shape Optimization
    Yu, Sheng
    Zhai, Di-Hua
    Xia, Yuanqing
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 1
  • [36] Toward Real-World Category-Level Articulation Pose Estimation
    Liu, Liu
    Xue, Han
    Xu, Wenqiang
    Fu, Haoyuan
    Lu, Cewu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 1072 - 1083
  • [37] Category-Level 6D Object Pose Estimation With Structure Encoder and Reasoning Attention
    Liu, Jierui
    Cao, Zhiqiang
    Tang, Yingbo
    Liu, Xilong
    Tan, Min
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (10) : 6728 - 6740
  • [38] Category-Level Articulated Object 9D Pose Estimation via Reinforcement Learning
    Liu, Liu
    Du, Jianming
    Wu, Hao
    Yang, Xun
    Liu, Zhenguang
    Hong, Richang
    Wang, Meng
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 728 - 736
  • [39] Deep-learning pipeline for object pose estimation from an rgb-d image
    No Y.C.
    Kim Y.
    Kim D.
    Han H.-G.
    Song Y.-K.
    Kim D.
    Journal of Institute of Control, Robotics and Systems, 2021, 27 (08) : 593 - 601
  • [40] Template based Human Pose and Shape Estimation from a Single RGB-D Image
    Li, Zhongguo
    Heyden, Anders
    Oskarsson, Magnus
    ICPRAM: PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS, 2019, : 574 - 581