Domination based graph neural networks

被引:0
|
作者
Meybodi, Mohsen Alambardar [1 ]
Safari, Mahdi [1 ]
Davoodijam, Ensieh [2 ]
机构
[1] Department of Applied Mathematics and Computer Science, Faculty of Mathematics and Statistics, University of Isfahan, Isfahan, Iran
[2] Department of Software Engineering, University of Kashan, Kashan, Iran
关键词
Adversarial machine learning - Contrastive Learning - Graph neural networks;
D O I
10.1080/1206212X.2024.2404087
中图分类号
学科分类号
摘要
Graph Neural Networks (GNNs) have emerged as a widely used and effective method across various domains for learning from graph data. Despite the abundance of GNN variants, many struggle with effectively propagating messages over long distances. This paper introduces a novel hierarchical message passing framework for graph learning, specifically designed to address the challenge of long-distance message propagation in graphs. By constructing smaller graphs from the main graph using the concept of domination, a fundamental principle in graph theory, we facilitate more efficient message passing within each subgraph. Subsequently, we employ a Graph Attention Network (GAT) to aggregate these features and propagate them to distant nodes across the graph. Experimental results on standard node classification datasets validate that the proposed architecture achieves performance comparable to or better than conventional GNNs. Additionally, our model consistently performs better on graphs with missing edges. © 2024 Informa UK Limited, trading as Taylor & Francis Group.
引用
收藏
页码:998 / 1005
相关论文
共 50 条
  • [41] Factor Graph Neural Networks
    Zhang, Zhen
    Dupty, Mohammed Haroon
    Wu, Fan
    Shi, Javen Qinfeng
    Lee, Wee Sun
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [42] Benchmarking Graph Neural Networks
    Dwivedi, Vijay Prakash
    Joshi, Chaitanya K.
    Luu, Anh Tuan
    Laurent, Thomas
    Bengio, Yoshua
    Bresson, Xavier
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [43] The Logic of Graph Neural Networks
    Grohe, Martin
    2021 36TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2021,
  • [44] Graph Pointer Neural Networks
    Yang, Tianmeng
    Wang, Yujing
    Yue, Zhihan
    Yang, Yaming
    Tong, Yunhai
    Bai, Jing
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 8832 - 8839
  • [45] Elastic Graph Neural Networks
    Liu, Xiaorui
    Jin, Wei
    Ma, Yao
    Li, Yaxin
    Liu, Hua
    Wang, Yiqi
    Yan, Ming
    Tang, Jiliang
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [46] Graph Kernel Neural Networks
    Cosmo, Luca
    Minello, Giorgia
    Bicciato, Alessandro
    Bronstein, Michael M.
    Rodola, Emanuele
    Rossi, Luca
    Torsello, Andrea
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 14
  • [47] GRAPH RECOGNITION BY NEURAL NETWORKS
    DREYFUS, G
    ZIPPELIUS, A
    NEURAL NETWORKS FROM MODELS TO APPLICATIONS, 1989, : 483 - 492
  • [48] ConveXplainer for Graph Neural Networks
    Pereira, Tamara A.
    Nascimento, Erik Jhones F.
    Mesquita, Diego
    Souza, Amauri H.
    INTELLIGENT SYSTEMS, PT II, 2022, 13654 : 588 - 600
  • [49] Graph Neural Networks with Heterophily
    Zhu, Jiong
    Rossi, Ryan A.
    Rao, Anup
    Mai, Tung
    Lipka, Nedim
    Ahmed, Nesreen K.
    Koutra, Danai
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 11168 - 11176
  • [50] Binary Graph Neural Networks
    Bahri, Mehdi
    Bahl, Gaetan
    Zafeiriou, Stefanos
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 9487 - 9496