Multi-Agent Attacks for Black-Box Social Recommendations

被引:0
|
作者
Wang, Shijie [1 ]
Fan, Wenqi [1 ]
Wei, Xiao-yong [1 ]
Mei, Xiaowei [1 ]
Lin, Shanru [2 ]
Li, Qing [1 ]
机构
[1] Hong Kong Polytech Univ, Hong Kong, Peoples R China
[2] City Univ Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Social Recommendations; Adversarial Attacks; Multi-agent Reinforcement Learning; Recommender Systems; Graph Neural Networks; Black-box Attacks;
D O I
10.1145/3696105
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The rise of online social networks has facilitated the evolution of social recommender systems, which incorporate social relations to enhance users' decision-making process. With the great success of Graph Neural Networks (GNNs) in learning node representations, GNN-based social recommendations have been widely studied to model user-item interactions and user-user social relations simultaneously. Despite their great successes, recent studies have shown that these advanced recommender systems are highly vulnerable to adversarial attacks, in which attackers can inject well-designed fake user profiles to disrupt recommendation performances. While most existing studies mainly focus on targeted attacks to promote target items on vanilla recommender systems, untargeted attacks to degrade the overall prediction performance are less explored on social recommendations under a black-box scenario. To perform untargeted attacks on social recommender systems, attackers can construct malicious social relationships for fake users to enhance the attack performance. However, the coordination of social relations and item profiles is challenging for attacking black-box social recommendations. To address this limitation, we first conduct several preliminary studies to demonstrate the effectiveness of cross-community connections and cold-start items in degrading recommendations performance. Specifically, we propose a novel framework MultiAttack based on multi-agent reinforcement learning to coordinate the generation of cold-start item profiles and cross-community social relations for conducting untargeted attacks on black-box social recommendations. Comprehensive experiments on various real-world datasets demonstrate the effectiveness of our proposed attacking framework under the black-box setting.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Black-box adversarial attacks by manipulating image attributes
    Wei, Xingxing
    Guo, Ying
    Li, Bo
    Information Sciences, 2021, 550 : 285 - 296
  • [32] Multi-granular Adversarial Attacks against Black-box Neural Ranking Models
    Liu, Yu-An
    Zhang, Ruqing
    Guo, Jiafeng
    de Rijke, Maarten
    Fan, Yixing
    Cheng, Xueqi
    PROCEEDINGS OF THE 47TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2024, 2024, : 1391 - 1400
  • [33] White-to-Black: Efficient Distillation of Black-Box Adversarial Attacks
    Gil, Yotam
    Chai, Yoav
    Gorodissky, Or
    Berant, Jonathan
    2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, 2019, : 1373 - 1379
  • [34] Multi-Agent Web Recommendations
    Neto, Joaquim
    Morais, A. Jorge
    DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE, 11TH INTERNATIONAL CONFERENCE, 2014, 290 : 235 - 242
  • [35] Spanning attack: reinforce black-box attacks with unlabeled data
    Lu Wang
    Huan Zhang
    Jinfeng Yi
    Cho-Jui Hsieh
    Yuan Jiang
    Machine Learning, 2020, 109 : 2349 - 2368
  • [36] Black-box Detection of Backdoor Attacks with Limited Information and Data
    Dong, Yinpeng
    Yang, Xiao
    Deng, Zhijie
    Pang, Tianyu
    Xiao, Zihao
    Su, Hang
    Zhu, Jun
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 16462 - 16471
  • [37] Black-Box Adversarial Attacks against Audio Forensics Models
    Jiang, Yi
    Ye, Dengpan
    SECURITY AND COMMUNICATION NETWORKS, 2022, 2022
  • [38] AutoAttacker: A reinforcement learning approach for black-box adversarial attacks
    Tsingenopoulos, Ilias
    Preuveneers, Davy
    Joosen, Wouter
    2019 4TH IEEE EUROPEAN SYMPOSIUM ON SECURITY AND PRIVACY WORKSHOPS (EUROS&PW), 2019, : 229 - 237
  • [39] Inspecting Prediction Confidence for Detecting Black-Box Backdoor Attacks
    Wang, Tong
    Yao, Yuan
    Xu, Feng
    Xu, Miao
    An, Shengwei
    Wang, Ting
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 1, 2024, : 274 - 282
  • [40] Query-based Local Black-box Adversarial Attacks
    Shi, Jing
    Zhang, Xiaolin
    Xu, Enhui
    Wang, Yongping
    Zhang, Wenwen
    International Journal of Network Security, 2023, 25 (06) : 1048 - 1058