Mechanical deviation in 3D-Printed PLA bone scaffolds during biodegradation

被引:0
|
作者
Senaysoy, Safa [1 ]
Ilhan, Recep [1 ,2 ]
Lekesiz, Huseyin [1 ]
机构
[1] Bursa Technical University, Department of Mechanical Engineering, Bursa, Turkey
[2] Bursa Technical University, Department of Polymer Materials Engineering, Bursa, Turkey
关键词
Cell growth - Cell proliferation - Fracture mechanics - Scaffolds - Scaffolds (biology) - Water content;
D O I
10.1016/j.compbiomed.2024.109227
中图分类号
学科分类号
摘要
Large or carcinogenic bone defects may require a challenging bone tissue scaffold design ensuring a proper mechanobiological setting. Porosity and biodegradation rate are the key parameters controlling the bone-remodeling process. PLA presents a great potential for geometrically flexible 3-D scaffold design. This study aims to investigate the mechanical variation throughout the biodegradation process for lattice-type PLA scaffolds using both experimental observations and simulations. Three different unit-cell geometries are used for creating the scaffolds: basic cube (BC), body-centered structure (BCS), and body-centered cube (BCC). Three different porosity ratios, 50 %, 62.5 %, and 75 %, are assigned to all three structures by altering their strut dimensions. 3-D printed scaffolds are soaked in PBS solution at 37 °C for 15, 30, 60, 90, and 120 days both unloaded and under dead load. Water absorption, weight loss, and compression stiffness are measured to characterize the first-stage degradation and investigate the possible influences of these parameters on the whole biodegradation process. The strength reduction stage of biodegradation is simulated by solving pseudo-first-order kinetics-based molecular weight change equation using FEA with equisized cubic (voxel-like) elements. For the first stage, mechanical load does not have a statistically significant effect on biodegradation. BCC with 62.5 % porosity shows a maximum water absorption rate of around 25 % by the 60th day which brings an advantage in creating an aquatic environment for cell growth. Results indicate a significant water deposition inside almost all scaffolds and water content is determined to be the main reason for the retained or increased compression stiffness. A distinguishable stiffness increase in the initial degradation process occurs for 75 % porous BC and 50 % porous BCC scaffolds. Following the quasi-stable stage of biodegradation, almost all scaffolds lost their rigidity by around 44–48 % within 120 days based on numerical results. Therefore, initial stiffness increase in the quasi-stable stage of biodegradation can be advantageous and BCC geometry with a porosity between 50% and 62 % is the optimum solution for the whole biodegradation process. © 2024 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [31] Designing osteogenic interfaces on 3D-Printed thermoplastic bone scaffolds
    Negi, Ankita
    Goswami, Kajal
    Diwan, Himanshi
    Agrawal, Garima
    Murab, Sumit
    MATERIALS TODAY CHEMISTRY, 2025, 45
  • [32] Towards resorbable 3D-printed scaffolds for craniofacial bone regeneration
    Karanth, Divakar
    Song, Kaidong
    Macey, L. Martin
    Meyer, Delaney R.
    Dolce, Calogero
    Huang, Yong
    Holliday, L. Shannon
    ORTHODONTICS & CRANIOFACIAL RESEARCH, 2023, 26 : 188 - 195
  • [33] 3D-Printed Ceramic Bone Scaffolds with Variable Pore Architectures
    Lim, Ho-Kyung
    Hong, Seok-Jin
    Byeon, Sun-Ju
    Chung, Sung-Min
    On, Sung-Woon
    Yang, Byoung-Eun
    Lee, Jong-Ho
    Byun, Soo-Hwan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (18) : 1 - 12
  • [34] 3D-printed biomimetic bone implant polymeric composite scaffolds
    Bankole Oladapo
    Abolfazl Zahedi
    Sikiru Ismail
    Wattala Fernando
    Omolayo Ikumapayi
    The International Journal of Advanced Manufacturing Technology, 2023, 126 : 4259 - 4267
  • [35] 3D-Printed PLA-Bioglass Scaffolds with Controllable Calcium Release and MSC Adhesion for Bone Tissue Engineering
    Schaetzlein, Eva
    Kicker, Christoph
    Soehling, Nicolas
    Ritz, Ulrike
    Neijhoft, Jonas
    Henrich, Dirk
    Frank, Johannes
    Marzi, Ingo
    Blaeser, Andreas
    POLYMERS, 2022, 14 (12)
  • [36] Effect of temperature on the mechanical properties of 3D-printed PLA tensile specimens
    Grasso, Marzio
    Azzouz, Lyes
    Ruiz-Hincapie, Paula
    Zarrelli, Mauro
    Ren, Guogang
    RAPID PROTOTYPING JOURNAL, 2018, 24 (08) : 1337 - 1346
  • [37] Mechanical characterization and puncture resistance of 3D-printed PLA lattice structures
    Mani, Megavannan
    Murugaiyan, Thiyagu
    Shanmugam, Vigneshwaran
    POLYMER ENGINEERING AND SCIENCE, 2024, 64 (10): : 5006 - 5021
  • [38] Design, fabrication, and characterization of 3D-printed ABS and PLA scaffolds potentially for tissue engineering
    Rahatuzzaman, Md
    Mahmud, Minar
    Rahman, Sazedur
    Hoque, Md Enamul
    RESULTS IN ENGINEERING, 2024, 21 (21)
  • [39] Relevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds
    Serra, Tiziano
    Ortiz-Hernandez, Monica
    Engel, Elisabeth
    Planell, Josep A.
    Navarro, Melba
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2014, 38 : 55 - 62
  • [40] Optimization of PLA/Mg/PEG biocomposite filaments for 3D-printed bone scaffolds using response surface methodology (RSM)
    Akbar, Imam
    Basri, Hasan
    Yanis, Muhammad
    Ammarullah, Muhammad Imam
    ADVANCED MANUFACTURING-POLYMER & COMPOSITES SCIENCE, 2025, 11 (01)