Phase formation and mechanical analysis of sintered Ni25Al25Co15Fe15Mn8Ti7Cr5 high entropy alloy

被引:0
|
作者
Olorundaisi, Emmanuel [1 ]
Babalola, Bukola J. [1 ]
Anamu, Ufoma S. [1 ]
Teffo, Moipone L. [2 ]
Kibambe, Ngeleshi Michel [1 ]
Ogunmefun, Anthony O. [1 ]
Odetola, Peter [1 ]
Olubambi, Peter A. [1 ]
机构
[1] Univ Johannesburg, Sch Min Met & Chem Engn, Ctr Nanoengn & Adv Mat, ZA-2092 Johannesburg, South Africa
[2] Tshwane Univ Technol, Dept Chem Met & Mat Engn, Inst Nanoengn Res, Pretoria, South Africa
关键词
High Entropy Alloy; Phase Formation; Thermodynamic simulation; Crystal Structure Microhardness; PARTICLE-SIZE DISTRIBUTION; MICROSTRUCTURE; BEHAVIOR;
D O I
10.1016/j.mfglet.2024.09.019
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In recent years, the pursuit of cutting-edge materials has intensified, with a focus on affordability, lightweight characteristics, and exceptional performance under high-temperature conditions, to serve as alternatives to Ni-base superalloys and other conventional alloys. Potential materials suitable for high-temperature structural applications with lightweight characteristics are intermetallics such as NiAl, and TiAl, but pose numerous fabrication challenges and poor ductility behaviour at room temperature. In view of this, a novel Ni25Al25Co15Fe15 Mn8Ti7Cr5 high entropy alloy (HEA) was fabricated using spark plasma sintering (SPS). The alloy was developed at a sintering temperature of 850 degrees C, a heating rate of 90 degrees C/min, a pressure of 50 MPa, and a dwelling time of 5 min. X-ray diffraction, scanning electron microscopy, and Vickers hardness tester were used to investigate the phase formation, microstructure, and mechanical properties of the HEA, respectively. The microstructure of the sintered HEA shows a homogenous dispersion of the alloying metals. The sintered microstructures showed a mixture of simple and complex phases. The grain size analysis shows that the sintered HEA exhibited a lower grain size of 2.28 mu m and a refined crystallite size of 3.159 mu m. The microhardness value and relative density of the sintered HEA are 135.8 HV and 99.56%, respectively.
引用
收藏
页码:153 / 159
页数:7
相关论文
共 50 条
  • [21] Effect of grain size on the tensile behavior of V10Cr15Mn5Fe35Co10Ni25 high entropy alloy
    Asghari-Rad, Peyman
    Sathiyamoorthi, Praveen
    Bae, Jae Wung
    Moon, Jongun
    Park, Jeong Min
    Zargaran, Alireza
    Kim, Hyoung Seop
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 744 : 610 - 617
  • [22] Phase prediction, microstructure, and mechanical properties of spark plasma sintered Ni-Al-Ti-Mn-Co-Fe-Cr high entropy alloys
    Olorundaisi, Emmanuel
    Babalola, Bukola J.
    Teffo, Moipone L.
    Anamu, Ufoma S.
    Olubambi, Peter A.
    Fayomi, Juwon
    Ogunmefun, Anthony O.
    DISCOVER NANO, 2023, 18 (01)
  • [23] Friction of high-entropy Fe25Cr20Ni20Mn15Co10Al10 alloy for 65G steel
    Gorban', V. F.
    Karpets, M. V.
    Makarenkoa, Ye. S.
    Kostenko, A. D.
    Danylenko, N. I.
    JOURNAL OF FRICTION AND WEAR, 2015, 36 (04) : 342 - 345
  • [24] Friction of high-entropy Fe25Cr20Ni20Mn15Co10Al10 alloy for 65G steel
    V. F. Gorban’
    M. V. Karpets
    Ye. S. Makarenkoa
    A. D. Kostenko
    N. I. Danylenko
    Journal of Friction and Wear, 2015, 36 : 342 - 345
  • [25] Ultrahigh strength and ductility combination in Al40Cr15Fe15Co15Ni15 triple-phase high entropy alloy
    Han, Peng
    Wang, Junjie
    Li, Huan
    INTERMETALLICS, 2024, 164
  • [26] The effect of Co substitutions for Ni on microstructure, mechanical properties and corrosion resistance of Fe50Mn25Cr15Ni10 medium-entropy alloy
    Wei, Ran
    Jiang, Zhen
    Gao, Qiuyu
    Chen, Chen
    Zhang, Kaisheng
    Zhang, Suo
    Han, Zhenhua
    Wu, Shaojie
    Wang, Tan
    Li, Fushan
    INTERMETALLICS, 2022, 149
  • [27] Microstructure and mechanical behavior of directionally solidified Fe35Ni15Mn25Al25
    Wu, X.
    Baker, I.
    Miller, M. K.
    More, K. L.
    Bei, H.
    Wu, H.
    INTERMETALLICS, 2013, 32 : 413 - 422
  • [28] Local Composition Migration Induced Microstructural Evolution and Mechanical Properties of Non-equiatomic Fe40Cr25Ni15Al15Co5 Medium-Entropy Alloy
    Shivam, Vikas
    Basu, Joysurya
    Manna, R.
    Mukhopadhyay, N. K.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2021, 52 (05): : 1777 - 1789
  • [29] Plasticity Improvement in a Co-Rich Co40Fe25Cr20Ni15 High-Entropy Alloy via Al Alloying
    Li, Yuxiao
    Chen, Yu
    Nutor, Raymond Kwesi
    Wang, Nan
    Cao, Qingping
    Wang, Xiaodong
    Zhang, Dongxian
    Jiang, Jian-Zhong
    MATERIALS, 2023, 16 (03)
  • [30] Sigma phase embrittlement in a tempered Fe45Cr25Ni10Mn15Al4C1 medium-entropy alloy
    Zuo, You
    Pan, Shuai
    He, Binbin
    Liang, Zhiyuan
    MATERIALS SCIENCE AND TECHNOLOGY, 2024, 40 (15) : 1095 - 1105