Tailoring Cathode-Electrolyte Interface for High-Power and Stable Lithium-Sulfur Batteries

被引:2
|
作者
Liu, Mengting [1 ]
Hu, Ling-Jiao [1 ]
Guan, Zhao-Kun [1 ]
Chen, Tian-Ling [1 ]
Zhang, Xin-Yu [1 ]
Sun, Shuai [1 ]
Shi, Ruoli [1 ]
Jing, Panpan [2 ]
Wang, Peng-Fei [1 ]
机构
[1] Xi An Jiao Tong Univ, Ctr Nanomat Renewable Energy, Sch Elect Engn, State Key Lab Elect Insulat & Power Equipment, Xian 710049, Peoples R China
[2] Shaanxi Univ Sci & Technol, Sch Mat Sci & Engn, Shaanxi Key Lab Green Preparat & Functionalizat In, Low Dimens Mat & Photo Electrochem Technol Lab, Xian 710021, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Lithium-sulfur batteries; Shuttle effect; Cathode-electrolyte interface; Structural enhancement; Reaction pathway; ENERGY-STORAGE; ION BATTERIES; PERFORMANCE; POLYSULFIDE; CATALYSTS; SULFIDE; DENSITY; DESIGN;
D O I
10.1007/s40820-024-01573-4
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Global interest in lithium-sulfur batteries as one of the most promising energy storage technologies has been sparked by their low sulfur cathode cost, high gravimetric, volumetric energy densities, abundant resources, and environmental friendliness. However, their practical application is significantly impeded by several serious issues that arise at the cathode-electrolyte interface, such as interface structure degradation including the uneven deposition of Li2S, unstable cathode-electrolyte interphase (CEI) layer and intermediate polysulfide shuttle effect. Thus, an optimized cathode-electrolyte interface along with optimized electrodes is required for overall improvement. Herein, we comprehensively outline the challenges and corresponding strategies, including electrolyte optimization to create a dense CEI layer, regulating the Li2S deposition pattern, and inhibiting the shuttle effect with regard to the solid-liquid-solid pathway, the transformation from solid-liquid-solid to solid-solid pathway, and solid-solid pathway at the cathode-electrolyte interface. In order to spur more perceptive research and hasten the widespread use of lithium-sulfur batteries, viewpoints on designing a stable interface with a deep comprehension are also put forth.
引用
收藏
页数:31
相关论文
共 50 条
  • [41] High capacity polycarbazole-sulfur cathode for use in lithium-sulfur batteries
    Ramezanitaghartapeh, Mohammad
    Hollenkamp, Anthony F.
    Musameh, Mustafa
    Mahon, Peter J.
    ELECTROCHIMICA ACTA, 2021, 391
  • [42] High-Entropy Alloys to Activate the Sulfur Cathode for Lithium-Sulfur Batteries
    Zhenyu Wang
    Hailun Ge
    Sheng Liu
    Guoran Li
    Xueping Gao
    Energy & Environmental Materials, 2023, 6 (03) : 139 - 148
  • [43] A Compact Nanoconfined Sulfur Cathode for High-Performance Lithium-Sulfur Batteries
    Li, Zhen
    Guan, Bu Yuan
    Zhang, Jintao
    Lou, Xiong Wen
    JOULE, 2017, 1 (03) : 576 - 587
  • [44] Hybrid cathode materials for lithium-sulfur batteries
    Choudhury, Soumyadip
    CURRENT OPINION IN ELECTROCHEMISTRY, 2020, 21 : 303 - 310
  • [45] A review of cathode materials in lithium-sulfur batteries
    Yang, Liwen
    Li, Qian
    Wang, Yang
    Chen, Yanxiao
    Guo, Xiaodong
    Wu, Zhenguo
    Chen, Guang
    Zhong, Benhe
    Xiang, Wei
    Zhong, Yanjun
    IONICS, 2020, 26 (11) : 5299 - 5318
  • [46] A review of cathode materials in lithium-sulfur batteries
    Liwen Yang
    Qian Li
    Yang Wang
    Yanxiao Chen
    Xiaodong Guo
    Zhenguo Wu
    Guang Chen
    Benhe Zhong
    Wei Xiang
    Yanjun Zhong
    Ionics, 2020, 26 : 5299 - 5318
  • [47] Regulation of Cathode-Electrolyte Interphase via Electrolyte Additives in Lithium Ion Batteries
    Wang, Xiao-Tong
    Gu, Zhen-Yi
    Li, Wen-Hao
    Zhao, Xin-Xin
    Guo, Jin-Zhi
    Du, Kai-Di
    Luo, Xiao-Xi
    Wu, Xing-Long
    CHEMISTRY-AN ASIAN JOURNAL, 2020, 15 (18) : 2803 - 2814
  • [48] The importance of the dissolution of polysulfides in lithium-sulfur batteries and a perspective on high-energy electrolyte/cathode design
    Yu, Linghui
    Ong, Samuel Jun Hoong
    Liu, Xianhu
    Mandler, Daniel
    Xu, Zhichuan J.
    ELECTROCHIMICA ACTA, 2021, 392
  • [49] The importance of the dissolution of polysulfides in lithium-sulfur batteries and a perspective on high-energy electrolyte/cathode design
    Yu, Linghui
    Ong, Samuel Jun Hoong
    Liu, Xianhu
    Mandler, Daniel
    Xu, Zhichuan J.
    Electrochimica Acta, 2021, 392
  • [50] Effective Separation of Lithium Anode and Sulfur Cathode in Lithium-Sulfur Batteries
    Vizintin, Alen
    Patel, Manu U. M.
    Genorio, Bostjan
    Dominko, Robert
    CHEMELECTROCHEM, 2014, 1 (06): : 1040 - 1045