Optimal Thermal Resistance Model of GaN HEMTs Considering Thickness-Dependent Thermal Conductivity

被引:0
|
作者
Ma, Xiao [1 ]
Wang, Kai [2 ]
Chen, Jingxiong [2 ]
Wang, Hong [1 ,3 ]
机构
[1] South China Univ Technol, Engn Res Ctr Optoelectronicof Guangdong Prov, Sch Phys & Optoelect, Guangzhou 510640, Peoples R China
[2] South China Univ Technol, Sch Elect & Informat Engn, Guangzhou 510640, Peoples R China
[3] South China Univ Technol, Zhongshan Inst Modern Ind Technol, Zhongshan 528437, Peoples R China
关键词
Thermal conductivity; Thermal resistance; Conductivity; Resistance; Substrates; Gallium nitride; MODFETs; HEMTs; Scattering; Temperature measurement; DebyebKKCallaway model; gallium nitride (GaN) high-electron-mobility-transistor (HEMT); thermal resistance; thermal simulation; BOUNDARY RESISTANCE; THERMOREFLECTANCE; THERMOGRAPHY; FILMS;
D O I
10.1109/TED.2024.3474610
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a thermal resistance model for gallium nitride (GaN) high electron mobility transistor (HEMT) that considers the thickness-dependence and anisotropy of the thermal conductivity of GaN films to improve the calculation accuracy. In this study, the Debye-Callaway model is used to calculate the in-plane and cross-plane thermal conductivity of the GaN buffer layer as a function of layer thickness. An electrical model of heat generation profiles is established by using the technology computer-aided design (TCAD). The temperature distribution is predicted by the finite element methods (FEMs) simulations. We confirm that as the thickness of the GaN layer increases, the total thermal resistance on diamond, SiC, and Si substrates decreases first and then increases, reaching their minimum values at 3.6, 5, and 48 mu m at a thermal boundary resistance (TBR) of 30 m(2) center dot K/GW, respectively. Moreover, there is a lack of research on the optimal GaN thickness of devices with different substrates. Based on this model, we investigate the effects of TBR, power dissipation level, and gate pitch values on the optimal GaN thickness of devices with different substrates (Si, SiC, and diamond).
引用
收藏
页码:7326 / 7333
页数:8
相关论文
共 50 条
  • [21] Thermal Modeling of GaN HEMTs
    Vasileska, B.
    Ashok, A.
    Hartin, O.
    Goodnick, S. M.
    LARGE-SCALE SCIENTIFIC COMPUTING, 2010, 5910 : 451 - +
  • [22] Thermal resistance of AlGaN/GaN HEMTs on SopSiC composite substrate
    Defrance, N.
    Douvry, Y.
    Hoel, V.
    Gerbedoen, J-C.
    Soltani, A.
    Rousseau, M.
    De Jaeger, J. C.
    Langer, R.
    Lahreche, H.
    ELECTRONICS LETTERS, 2010, 46 (13) : 949 - U112
  • [23] A theoretical study of thermal management of FBAR considering thickness- and temperature-dependent thermal conductivity of AlN
    Zhao, Lishuai
    Yi, Xinyan
    Ouyang, Peidong
    Li, Guoqiang
    AIP ADVANCES, 2022, 12 (09)
  • [24] Measuring Thermal Resistance of GaN HEMTs Using Modulation Method
    Smirnov, Vitaliy
    Sergeev, Viacheslav
    Gavrikov, Andrey
    Kulikov, Alexander
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2020, 67 (10) : 4112 - 4117
  • [25] Thickness-Dependent Thermal Oxidation of Ni into NiO Thin Films
    Ravikumar, Patta
    Taparia, Dolly
    Alagarsamy, Perumal
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2018, 31 (11) : 3761 - 3775
  • [26] Thickness-Dependent Thermal Oxidation of Ni into NiO Thin Films
    Patta Ravikumar
    Dolly Taparia
    Perumal Alagarsamy
    Journal of Superconductivity and Novel Magnetism, 2018, 31 : 3761 - 3775
  • [27] Thickness-dependent thermal conductivity of mechanically exfoliated β-Ga2O3 thin films
    Zhang, Yingying
    Su, Qun
    Zhu, Jie
    Koirala, Sandhaya
    Koester, Steven J.
    Wang, Xiaojia
    APPLIED PHYSICS LETTERS, 2020, 116 (20)
  • [28] Thickness dependent thermal conductivity of gallium nitride
    Ziade, Elbara
    Yang, Jia
    Brummer, Gordie
    Nothern, Denis
    Moustakas, Theodore
    Schmidt, Aaron J.
    APPLIED PHYSICS LETTERS, 2017, 110 (03)
  • [29] Thermal Simulations in GaN HEMTs Considering the Coupling Effects of Ballistic-Diffusive Transport and Thermal Spreading
    Chen, Xingji
    Tang, Daosheng
    IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2023, 13 (12): : 1929 - 1943
  • [30] A Universal Scalable Thermal Resistance Model for Compact Large-Signal Model of AlGaN/GaN HEMTs
    Jia, Yonghao
    Xu, Yuehang
    Guo, Yongxin
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2018, 66 (10) : 4419 - 4429