Change in coherence properties of ovally Gaussian Schell-model vortex beam in non-Kolmogorov turbulence along an uplink path

被引:0
|
作者
Liu, Wenli [1 ]
Xu, Yonggen [1 ]
Li, Bocheng [1 ]
机构
[1] Xihua Univ, Sch Sci, Dept Phys, Chengdu 610039, Peoples R China
来源
OPTICS EXPRESS | 2024年 / 32卷 / 24期
基金
中国国家自然科学基金;
关键词
ORBITAL ANGULAR-MOMENTUM; PROPAGATION; POLARIZATION; LIGHT;
D O I
10.1364/OE.541935
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Analytical expressions are obtained for the cross-spectral density (CSD) matrix elements of an ovally Gaussian Schell-model vortex (OGSMV) beam propagating in nonKolmogorov turbulence along uplink path based on the extended Huygens-Fresnel principle, and its coherence properties such as spectral degree of coherence (SDOC), phase distributions and coherence vortices are investigated in detail. Results indicate that the profile of the SDOC of OGSMV beam in turbulence gradually degrades into a Gaussian-like profile, and OGSMV beam with smaller ovality, larger topological charge number and initial coherence lengths will slow down this process. Interestingly, it is clearer to observe the coherence rings of the SDOC for OGSMV beam by reducing the initial auto-correlation lengths. Furthermore, one also finds that the number of elliptical edge dislocation for phase distribution of OGSMV beam is equal to topological charge number. They can provide two effectively ways for measuring topological charge number. Lastly, we used the phase screen simulation to verify our theoretical predictions. Theoretical outcomes are in good agreement with the simulations. Our results will be of important reference for optical communication. (c) 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:43315 / 43328
页数:14
相关论文
共 50 条
  • [21] Average polarizability of quantization Bessel-Gaussian Schell-model beams in anisotropic non-Kolmogorov turbulence
    Li, Ye
    Zhang, Yixin
    FOURTH SEMINAR ON NOVEL OPTOELECTRONIC DETECTION TECHNOLOGY AND APPLICATION, 2018, 10697
  • [22] Polarization fluctuations of Gaussian Schell-model type photon beams in a slant channel with non-Kolmogorov turbulence
    Zhang, Yixin
    Wang, Yuanguang
    Wang, Jianyu
    Jia, Jianjun
    OPTIK, 2012, 123 (17): : 1511 - 1514
  • [23] Propagation of radially polarized multi-cosine Gaussian Schell-model beams in non-Kolmogorov turbulence
    Tang, Miaomiao
    Zhao, Daomu
    Li, Xinzhong
    Wang, Jingge
    OPTICS COMMUNICATIONS, 2018, 407 : 392 - 397
  • [24] Beam propagation factor of radial Gaussian-Schell model beam array in non-Kolmogorov turbulence
    Tang, Hua
    Ou, Baolin
    OPTICS AND LASER TECHNOLOGY, 2011, 43 (08): : 1442 - 1447
  • [25] Spreading and evolution behavior of coherent vortices of multi-Gaussian Schell-model vortex beams propagating through non-Kolmogorov turbulence
    Wang, Xiaoyang
    Yao, Mingwu
    Yi, Xiang
    Qiu, Zhiliang
    Liu, Zengji
    OPTICS AND LASER TECHNOLOGY, 2017, 87 : 99 - 107
  • [26] Average spreading of a linear Gaussian-Schell model beam array in non-Kolmogorov turbulence
    Tang, H.
    Ou, B.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2011, 104 (04): : 1007 - 1012
  • [27] Average intensity and propagation factors of the rectangular Laguerre-Gaussian correlated Schell-model beam propagating through non-Kolmogorov turbulence
    Liu, Huilong
    Xia, Jing
    Hu, Zonghua
    Lu, Yanfei
    JOURNAL OF OPTICS, 2018, 20 (10)
  • [28] Propagation factors of multi-sinc Schell-model beams in non-Kolmogorov turbulence
    Song, Zhenzhen
    Liu, Zhengjun
    Zhou, Keya
    Sun, Qiongge
    Liu, Shutian
    OPTICS EXPRESS, 2016, 24 (02): : 1804 - 1813
  • [29] Propagation factor of electromagnetic concentric rings Schell-model beams in non-Kolmogorov turbulence
    Song, Zhen-Zhen
    Liu, Zheng-Jun
    Zhou, Ke-Ya
    Sun, Qiong-Ge
    Liu, Shu-Tian
    CHINESE PHYSICS B, 2017, 26 (02)
  • [30] Propagation factor of electromagnetic concentric rings Schell-model beams in non-Kolmogorov turbulence
    宋真真
    刘正君
    周可雅
    孙琼阁
    刘树田
    Chinese Physics B, 2017, (02) : 210 - 216