Enhancing IoT Security Using GA-HDLAD: A Hybrid Deep Learning Approach for Anomaly Detection

被引:2
|
作者
Mutambik, Ibrahim [1 ]
机构
[1] King Saud Univ, Coll Humanities & Social Sci, Dept Informat Sci, POB 11451, Riyadh, Saudi Arabia
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 21期
关键词
Internet of Things (IoT); IoT security; anomaly detection; hybrid deep learning (HDL); genetic algorithm (GA); feature extraction techniques (FETs); OPTIMIZATION; ALGORITHM;
D O I
10.3390/app14219848
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The adoption and use of the Internet of Things (IoT) have increased rapidly over recent years, and cyber threats in IoT devices have also become more common. Thus, the development of a system that can effectively identify malicious attacks and reduce security threats in IoT devices has become a topic of great importance. One of the most serious threats comes from botnets, which commonly attack IoT devices by interrupting the networks required for the devices to run. There are a number of methods that can be used to improve security by identifying unknown patterns in IoT networks, including deep learning and machine learning approaches. In this study, an algorithm named the genetic algorithm with hybrid deep learning-based anomaly detection (GA-HDLAD) is developed, with the aim of improving security by identifying botnets within the IoT environment. The GA-HDLAD technique addresses the problem of high dimensionality by using a genetic algorithm during feature selection. Hybrid deep learning is used to detect botnets; the approach is a combination of recurrent neural networks (RNNs), feature extraction techniques (FETs), and attention concepts. Botnet attacks commonly involve complex patterns that the hybrid deep learning (HDL) method can detect. Moreover, the use of FETs in the model ensures that features can be effectively extracted from spatial data, while temporal dependencies are captured by RNNs. Simulated annealing (SA) is utilized to select the hyperparameters necessary for the HDL approach. In this study, the GA-HDLAD system is experimentally assessed using a benchmark botnet dataset, and the findings reveal that the system provides superior results in comparison to existing detection methods.
引用
收藏
页数:19
相关论文
共 50 条
  • [11] Effective Anomaly Detection Using Deep Learning in IoT Systems
    Aversano L.
    Bernardi M.L.
    Cimitile M.
    Pecori R.
    Veltri L.
    Wireless Communications and Mobile Computing, 2021, 2021
  • [12] IoT Botnet Anomaly Detection Using Unsupervised Deep Learning
    Apostol, Ioana
    Preda, Marius
    Nila, Constantin
    Bica, Ion
    ELECTRONICS, 2021, 10 (16)
  • [13] A GAN-based Hybrid Deep Learning Approach for Enhancing Intrusion Detection in IoT Networks
    Balaji, S.
    Dhanabalan, G.
    Umarani, C.
    Naskath, J.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (06) : 348 - 354
  • [14] DeepDetect: An innovative hybrid deep learning framework for anomaly detection in IoT networks
    Zulfiqar, Zeenat
    Malik, Saif U. R.
    Moqurrab, Syed Atif
    Zulfiqar, Zubair
    Yaseen, Usman
    Srivastava, Gautam
    JOURNAL OF COMPUTATIONAL SCIENCE, 2024, 83
  • [15] A Hybrid Deep Learning Approach for Intrusion Detection in IoT Networks
    Emec, Murat
    Ozcanhan, Mehmet Hilal
    ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2022, 22 (01) : 3 - 12
  • [16] Enhancing IoT Anomaly Detection Performance for Federated Learning
    Weinger, Brett
    Kim, Jinoh
    Sim, Alex
    Nakashima, Makiya
    Moustafa, Nour
    Wu, K. John
    2020 16TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING (MSN 2020), 2020, : 206 - 213
  • [17] Enhancing IoT anomaly detection performance for federated learning
    Weinger, Brett
    Kim, Jinoh
    Sim, Alex
    Nakashima, Makiya
    Moustafa, Nour
    Wu, K. John
    DIGITAL COMMUNICATIONS AND NETWORKS, 2022, 8 (03) : 314 - 323
  • [18] Enhancing IoT anomaly detection performance for federated learning
    Brett Weinger
    Jinoh Kim
    Alex Sim
    Makiya Nakashima
    Nour Moustafa
    KJohn Wu
    Digital Communications and Networks, 2022, 8 (03) : 314 - 323
  • [19] Robust Network Security: A Deep Learning Approach to Intrusion Detection in IoT
    Odeh, Ammar
    Abu Taleb, Anas
    Computers, Materials and Continua, 2024, 81 (03): : 4149 - 4169
  • [20] Enhancing IoT Security: A Few-Shot Learning Approach for Intrusion Detection
    Althiyabi, Theyab
    Ahmad, Iftikhar
    Alassafi, Madini O.
    MATHEMATICS, 2024, 12 (07)