High-performance organic electrodes for sustainable zinc-ion batteries: Advances, challenges and perspectives

被引:7
|
作者
Zhang, Yu [1 ]
Li, Yi [1 ]
Yao, Sunyu [2 ]
Ali, Noreen [1 ]
Kong, Xirui [1 ]
Wang, Jiulin [1 ,2 ,3 ]
机构
[1] Xinjiang Univ, Coll Chem, Urumqi 830017, Xinjiang, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Chem Engn, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Sichuan Res Inst, Chengdu 610213, Sichuan, Peoples R China
关键词
Zinc-ion batteries; Organic cathode materials; Redox reaction mechanism; Electrochemistry; ELECTROCHEMICAL PROPERTIES; ENERGY-STORAGE; CATHODE MATERIAL; HIGH-CAPACITY; POLYANILINE; DIANHYDRIDE; NANOFIBERS; CHEMISTRY; QUINONE; DESIGN;
D O I
10.1016/j.ensm.2024.103544
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The burgeoning demand for renewable energy sources is catalyzing advancements in energy storage and conversion technologies. In contrast to conventional inorganic materials, organic electrode materials (OEMs) are poised as the optimal cathodes for the next-generation zinc-ion batteries (ZIBs). This is attributable to their abundant source materials, superior theoretical capacity, versatility in structural design, and inherent sustainability. Despite extensive research endeavors directed towards OEMs, they frequently manifest challenges associated with limited conductivity and stability, precipitating in a degradation of their output capability. Furthermore, the underlying operational mechanisms of these materials remain a subject of ongoing investigation. This review firstly elucidates the diverse storage mechanisms posited for various organic cathodes and delineates the fundamentals and evolutionary trends of OEMs, especially those characterized by distinct active functional groups. Subsequently, consolidates the primary challenges encumbering organic cathodes and advocate strategic design interventions to enhance their electrochemical performance. The forward-looking perspectives on Zn-organic batteries are provided finally. We believe that this review will provide some inspiration for the development of advanced and efficient aqueous ZIBs.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Eutectic Electrolyte with Unique Solvation Structure for High-Performance Zinc-Ion Batteries
    Geng, Lishan
    Meng, Jiashen
    Wang, Xuanpeng
    Han, Chunhua
    Han, Kang
    Xiao, Zhitong
    Huang, Meng
    Xu, Peng
    Zhang, Lei
    Zhou, Liang
    Mai, Liqiang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (31)
  • [42] Advances in manganese-based cathode electrodes for aqueous zinc-ion batteries
    Luo, Haixiang
    Zhang, Hui-Juan
    Tao, Yiming
    Yao, Wenli
    Xue, Yuhua
    FRONTIERS IN ENERGY, 2025,
  • [43] Modification of Zinc Anodes by In Situ ZnO Coating for High-Performance Aqueous Zinc-Ion Batteries
    Zhao, Wen
    Perera, Inosh Prabasha
    Khanna, Harshul S.
    Dang, Yanliu
    Li, Mingxuan
    Posada, Luisa F.
    Tan, Haiyan
    Suib, Steven L.
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (03) : 1172 - 1181
  • [44] Sodium Ion Stabilized Vanadium Oxide Nanowire Cathode for High-Performance Zinc-Ion Batteries
    He, Pan
    Zhang, Guobin
    Liao, Xiaobin
    Yan, Mengyu
    Xu, Xu
    An, Qinyou
    Liu, Jun
    Mai, Liqiang
    ADVANCED ENERGY MATERIALS, 2018, 8 (10)
  • [45] Biological ion channel inspired interfacial protection layer for high-performance zinc-ion batteries
    Wang, Kai-Xin
    Yuan, Ru-Duan
    He, Yu-Ting
    Reng, Sheng-Hao
    Gou, Qian-Zhi
    Zhang, Si-Da
    Deng, Jiang-Bin
    Luogu, Zi-Ga
    Chen, Zhao-Yu
    Gu, Xing-Xing
    Li, Meng
    RARE METALS, 2025, 44 (02) : 912 - 924
  • [46] High-Performance Aqueous Zinc-Ion Batteries Based on an Organic Compound with Multiple Active Groups and Hydrogen Bonds
    Zhou, Ke
    Liu, Xiaocen
    Chen, Xiaojuan
    Su, Lixin
    Yang, Hong
    Yang, Baozhu
    Liu, Qi
    ENERGY & FUELS, 2025,
  • [47] Novel Organic Cathode with Conjugated N-Heteroaromatic Structures for High-Performance Aqueous Zinc-Ion Batteries
    Li, Jiahao
    Huang, Lulu
    Lv, Heng
    Wang, Jiali
    Wang, Gang
    Chen, Long
    Liu, Yanyan
    Guo, Wen
    Yu, Feng
    Gu, Tiantian
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (34) : 38844 - 38853
  • [48] Fundamentals, Advances and Perspectives in Designing Eutectic Electrolytes for Zinc-Ion Secondary Batteries
    Wang, Mengya
    Xu, Zuojie
    He, Chaowei
    Cai, Lucheng
    Zheng, Haonan
    Sun, Zixu
    Liu, Hua Kun
    Ying, Hangjun
    Dou, Shixue
    ACS NANO, 2025, 19 (10) : 9709 - 9739
  • [49] Recent Advances in Aqueous Zinc-Ion Batteries
    Fang, Guozhao
    Zhou, Jiang
    Pan, Anqiang
    Liang, Shuquan
    ACS ENERGY LETTERS, 2018, 3 (10): : 2480 - 2501
  • [50] Interfacial engineering of manganese-based oxides for aqueous zinc-ion batteries: Advances, mechanisms, challenges and perspectives
    Yuehua Qian
    Lingyun Chen
    Journal of Energy Chemistry, 2024, 99 (12) : 553 - 579