Learning Spatiotemporal Dependencies Using Dynamic Graph Learning Algorithms for Air Quality Prediction in Lanzhou City

被引:0
|
作者
Ma, Longbin [1 ]
Zhang, Qiang [1 ]
Qi, Ying [1 ]
机构
[1] Department of Computer Science and Engineering, Northwest Normal University, Gansu, Lanzhou, China
基金
中国国家自然科学基金;
关键词
Air pollution control - Graph algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:729 / 734
相关论文
共 50 条
  • [1] Learning spatiotemporal dependencies using adaptive hierarchical graph convolutional neural network for air quality prediction
    Hu, Wei
    Zhang, Zhen
    Zhang, Shiqing
    Chen, Caimei
    Yuan, Jiwei
    Yao, Jun
    Zhao, Shuchang
    Guo, Lin
    JOURNAL OF CLEANER PRODUCTION, 2024, 459
  • [2] Air Quality Index prediction using machine learning for Ahmedabad city
    Maltare, Nilesh N.
    Vahora, Safvan
    DIGITAL CHEMICAL ENGINEERING, 2023, 7
  • [3] Graph Learning for Spatiotemporal Dynamic Signal
    Liu, Yueliang
    You, Kangyong
    Guo, Wenbin
    Peng, Tao
    Wang, Wenbo
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [4] Prediction of air pollutants for air quality using deep learning methods in a metropolitan city
    Das, Bihter
    Dursun, Omer Osman
    Toraman, Suat
    URBAN CLIMATE, 2022, 46
  • [5] Comparative analysis of Air Quality Index prediction using deep learning algorithms
    Ankita Mishra
    Yogesh Gupta
    Spatial Information Research, 2024, 32 : 63 - 72
  • [6] Comparative analysis of Air Quality Index prediction using deep learning algorithms
    Mishra, Ankita
    Gupta, Yogesh
    SPATIAL INFORMATION RESEARCH, 2024, 32 (01) : 63 - 72
  • [7] Systematic Review of Machine Learning and Deep Learning Techniques for Spatiotemporal Air Quality Prediction
    Agbehadji, Israel Edem
    Obagbuwa, Ibidun Christiana
    Atmosphere, 15 (11):
  • [8] A set of deep learning algorithms for air quality prediction applications
    Iskandaryan, Ditsuhi
    Ramos, Francisco
    Trilles, Sergio
    SOFTWARE IMPACTS, 2023, 17
  • [9] Spatiotemporal adaptive attention graph convolution network for city-level air quality prediction
    Hexiang Liu
    Qilong Han
    Hui Sun
    Jingyu Sheng
    Ziyu Yang
    Scientific Reports, 13
  • [10] Regional air quality forecasting using spatiotemporal deep learning
    Abirami, S.
    Chitra, P.
    JOURNAL OF CLEANER PRODUCTION, 2021, 283