Comparative analysis of Air Quality Index prediction using deep learning algorithms

被引:0
|
作者
Ankita Mishra
Yogesh Gupta
机构
[1] Banasthali Vidyapith,Computer Science and Engineering
来源
关键词
Air Quality Index (AQI); Deep learning algorithms; Classical machine learning algorithms; LSTM; ARIMA; And Urbanization;
D O I
暂无
中图分类号
学科分类号
摘要
This paper comprehensively reviews and compares methodologies used to monitor air quality and their impact on human health. With urbanization and industrialization increasing in emerging nations, air pollution levels have become a significant threat to human well-being. The study highlights the importance of reducing exposure to air pollution for the improvement of public health. The paper focuses on the comparative analysis of measuring the Air Quality Index (AQI) using deep learning algorithms like Long Short-Term Memory (LSTM) and classical machine learning models such as Autoregressive Integrated Moving Average (ARIMA), Decision Tree, K-Nearest Neighbour, Extreme Gradient Boosting, Gradient Boosting, Adaptive Boosting, Huber Regressor, and Dummy Regressor for AQI prediction. The performance of these models is evaluated using daily and hourly time series data from 2014 to 2018, with the Root Mean Squared Error (RMSE) used as the performance indicator. The results demonstrate that LSTM outperforms ARIMA, particularly with hourly data. For daily data, ARIMA achieved an RMSE of 97.88, whereas LSTM obtained an RMSE of 143.07. On the other hand, for hourly data, ARIMA yielded an RMSE of 69.65, while LSTM achieved a lower RMSE of 44.6539. These findings highlight the potential of deep learning algorithms, specifically LSTM, in accurately forecasting air quality.
引用
收藏
页码:63 / 72
页数:9
相关论文
共 50 条
  • [1] Comparative analysis of Air Quality Index prediction using deep learning algorithms
    Mishra, Ankita
    Gupta, Yogesh
    SPATIAL INFORMATION RESEARCH, 2024, 32 (01) : 63 - 72
  • [2] Comparative Analysis of Machine Learning Algorithms for Predicting Air Quality Index
    Kekulanadara, K.M.O.V.K.
    Kumara, B.T.G.S.
    Kuhaneswaran, Banujan
    2021 From Innovation To Impact, FITI 2021, 2021,
  • [3] Air Quality Index prediction using an effective hybrid deep learning model
    Sarkar, Nairita
    Gupta, Rajan
    Keserwani, Pankaj Kumar
    Govil, Mahesh Chandra
    ENVIRONMENTAL POLLUTION, 2022, 315
  • [4] Machine learning-based prediction of air quality index and air quality grade: a comparative analysis
    Aram, S. A.
    Nketiah, E. A.
    Saalidong, B. M.
    Wang, H.
    Afitiri, A. -R.
    Akoto, A. B.
    Lartey, P. O.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2024, 21 (02) : 1345 - 1360
  • [5] Machine learning-based prediction of air quality index and air quality grade: a comparative analysis
    S. A. Aram
    E. A. Nketiah
    B. M. Saalidong
    H. Wang
    A.-R. Afitiri
    A. B. Akoto
    P. O. Lartey
    International Journal of Environmental Science and Technology, 2024, 21 : 1345 - 1360
  • [6] A set of deep learning algorithms for air quality prediction applications
    Iskandaryan, Ditsuhi
    Ramos, Francisco
    Trilles, Sergio
    SOFTWARE IMPACTS, 2023, 17
  • [7] Evaluation of Machine Learning Algorithms for Air Quality Index (AQI) Prediction
    Pant, Alka
    Sharma, Sanjay
    Pant, Kamal
    JOURNAL OF RELIABILITY AND STATISTICAL STUDIES, 2023, 16 (02): : 229 - 242
  • [8] Air Quality Index and Air Pollutant Concentration Prediction Based on Machine Learning Algorithms
    Liu, Huixiang
    Li, Qing
    Yu, Dongbing
    Gu, Yu
    APPLIED SCIENCES-BASEL, 2019, 9 (19):
  • [9] A deep learning approach for prediction of air quality index in smart city
    Binbusayyis, Adel
    Khan, Muhammad Attique
    Ahmed, A. Mohamed Mustaq
    Emmanuel, W. R. Sam
    DISCOVER SUSTAINABILITY, 2024, 5 (01):
  • [10] A deep learning approach for prediction of air quality index in a metropolitan city
    Janarthanan, R.
    Partheeban, P.
    Somasundaram, K.
    Elamparithi, P. Navin
    SUSTAINABLE CITIES AND SOCIETY, 2021, 67