Multidentate Polymer-Stabilized Buried Interface for Efficient Planar Perovskite Solar Cells

被引:1
|
作者
Zhu, Hao [1 ,2 ]
Wang, Chao [1 ,2 ]
Mo, Yanping [1 ]
Chen, Dehong [3 ]
Xue, Bofei [1 ]
Huang, Fuzhi [1 ,2 ]
机构
[1] Foshan Xianhu Lab, Adv Energy Sci & Technol Guangdong Lab, Foshan 528216, Peoples R China
[2] Wuhan Univ Technol, Res Ctr Adv Thin Film Photovolta, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[3] Qingdao Univ Sci & Technol, Coll Mat Sci & Engn, Qingdao 266042, Peoples R China
基金
中国国家自然科学基金;
关键词
multidentate polymer; passivation; buried interface; SnO2; perovskite solar cells; HALIDE PEROVSKITES;
D O I
10.1021/acsami.4c14684
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Buried interface engineering is crucial to improve the performance and stability of perovskite solar cells (PSCs). Although coordination materials have been widely used for buried interface modification, they are generally engineered on one surface of the interface through monodentate or bidentate molecules. Here, we propose that a multidentate polymer, sodium alginate (SA), acts with both surfaces via numerous C & boxH;O groups to reinforce buried interfaces. SA effectively reduces buried interface defects, adjusts the energy level alignment, and refines carrier dynamics. Notably, it also induces the growth of a perovskite film that is less tensile stressed and free of voids. Consequently, the champion device efficiency after SA treatment increased from 23.05% to 24.98%, along with significant improvements in both light and thermal stability. This work offers insights into efficiency and stability improvement from the perspective of multidentate polymer anchoring.
引用
收藏
页码:58739 / 58745
页数:7
相关论文
共 50 条
  • [31] Multidentate passivation crosslinking perovskite quantum dots for efficient solar cells
    Chen, Jingxuan
    Jia, Donglin
    Qiu, Junming
    Zhuang, Rongshan
    Hua, Yong
    Zhang, Xiaoliang
    NANO ENERGY, 2022, 96
  • [32] Multifunctional sodium phytate as buried interface Passivator for high efficiency and stable planar perovskite solar cells
    Su, Haijun
    Liu, Congcong
    Fan, Huichao
    Guo, Yinuo
    Guo, Min
    Zhang, Zhuo
    CHEMICAL ENGINEERING JOURNAL, 2024, 500
  • [33] The Role of Thickness Control and Interface Modification in Assembling Efficient Planar Perovskite Solar Cells
    Sun, Weifu
    Choy, Kwang-Leong
    Wang, Mingqing
    MOLECULES, 2019, 24 (19):
  • [34] Interface modification by ethanolamine interfacial layer for efficient planar structure perovskite solar cells
    Hu, Xiaofei
    Yang, Haichao
    Zhang, Cong
    Ding, Yanqiao
    Li, Wei
    Wang, Huaxin
    Zang, Zhigang
    JOURNAL OF POWER SOURCES, 2021, 513
  • [35] Interface passivation using choline acetate for efficient and stable planar perovskite solar cells
    Thambidurai, M.
    Dewi, Herlina Arianita
    Xizu, Wang
    Mathews, Nripan
    Dang, Cuong
    Nguyen, Hung D. D.
    SUSTAINABLE ENERGY & FUELS, 2023, 7 (17) : 4172 - 4178
  • [36] Interface engineering with NiO nanocrystals for highly efficient and stable planar perovskite solar cells
    Zhang, Weina
    Zhang, Xuezhen
    Wu, Tongyue
    Sun, Weihai
    Wu, Jihuai
    Lan, Zhang
    ELECTROCHIMICA ACTA, 2019, 293 : 211 - 219
  • [37] Stabilization Strategies of Buried Interface for Efficient SAM-Based Inverted Perovskite Solar Cells
    Yu, Xinyu
    Sun, Xianglang
    Zhu, Zonglong
    Li, Zhong'an
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025, 64 (08)
  • [38] Chlorobenzenesulfonic Potassium Salts as the Efficient Multifunctional Passivator for the Buried Interface in Regular Perovskite Solar Cells
    Dong, Yao
    Shen, Wenjian
    Dong, Wei
    Bai, Cong
    Zhao, Juan
    Zhou, Yecheng
    Huang, Fuzhi
    Yi-Bing Cheng
    Zhong, Jie
    ADVANCED ENERGY MATERIALS, 2022, 12 (20)
  • [39] Synergistic Optimization of Buried Interface via Hydrochloric Acid for Efficient and Stable Perovskite Solar Cells
    Zhao, Xing
    Wu, Danxia
    Yan, Huilin
    Cui, Peng
    Qiu, Yujie
    Fan, Bingbing
    Yue, Xiaopeng
    Li, Liang
    Li, Meicheng
    SMALL, 2024,
  • [40] One-pot surface and buried interface manipulation of perovskite film for efficient solar cells
    Lv, Xudong
    Gao, Xingbang
    Yu, Zefeng
    Xiao, Guo-Bin
    Tang, Yu
    Cao, Jing
    CELL REPORTS PHYSICAL SCIENCE, 2023, 4 (04):