Railway track fault detection using optimised convolution neural network

被引:0
|
作者
Chitra R. [1 ]
Bamini A.M.A. [1 ]
Brindha D. [1 ]
Jegan T.M.C. [2 ]
Kirubakaran S.S. [2 ]
机构
[1] Department of Computer Science and Engineering, Karunya Institute of Technology and Sciences, Tamil Nadu, Coimbatore
[2] Department of Mechanical Engineering, Sri Ranganathar Institute of Engineering and Technology, Tamil Nadu, Coimbatore
关键词
activation function; neural network; optimisation; track; VGG;
D O I
10.1504/IJRS.2024.139215
中图分类号
学科分类号
摘要
Railway accidents are an under-scrutinised cause of death in India. Train accidents are caused by various consequences of collisions, derailments, signal errors and so on. Furthermore, when train derailments become disastrous, they can have tremendous repercussions. It is practically difficult to identify the cause of the derailment efficiently within a limited period. In recent years, we have been making progress in reducing derailments, but even if not deadly, identifying faulty tracks can waste a lot of time and money. And doing this error-free is a pressing matter, as tracks always experience wear and tear with more usage. Here is where neural networks can pitch in their solution. We can train a model to look at train tracks and identify any issues. This paper goes into the methodology of achieving this and optimising a neural network to predict problems in the track with the best possible accuracy that images can provide. The objective of this paper is to identify, develop and optimise neural networks to detect faulty tracks. In this work, a good Convolution Neural Network model is developed to identify the crack in the railway track. The developed model produced 95.54% accuracy in fault classification. Copyright © 2024 Inderscience Enterprises Ltd.
引用
收藏
页码:163 / 186
页数:23
相关论文
共 50 条
  • [31] Multiple Forgery Detection in Video Using Convolution Neural Network
    Kumar, Vinay
    Kansal, Vineet
    Gaur, Manish
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (01): : 1347 - 1364
  • [32] A Retinal Verssel Detection Approach Using Convolution Neural Network
    Sengur, Abdulkadir
    Guo, Yanhui
    Budak, Umit
    Vespa, Lucas J.
    2017 INTERNATIONAL ARTIFICIAL INTELLIGENCE AND DATA PROCESSING SYMPOSIUM (IDAP), 2017,
  • [33] Fabric Defect Detection Using Deep Convolution Neural Network
    Fan, Junjun
    Wong, Wai Keung
    Wen, Jiajun
    Gao, Can
    Mo, Dongmei
    Lai, Zhihui
    AATCC JOURNAL OF RESEARCH, 2021, 8 (1_SUPPL) : 144 - 151
  • [34] A Critical Review of Object Detection using Convolution Neural Network
    Nisa, Sehar Un
    Imran, Muhammad
    2019 2ND INTERNATIONAL CONFERENCE ON COMMUNICATION, COMPUTING AND DIGITAL SYSTEMS (C-CODE), 2019, : 154 - 159
  • [35] Fabric Defect Detection Using Deep Convolution Neural Network
    Fan, Junjun
    Wong, Wai Keung
    Wen, Jiajun
    Gao, Can
    Mo, Dongmei
    Lai, Zhihui
    AATCC JOURNAL OF RESEARCH, 2021, 8 : 143 - 150
  • [36] Tomato Leaf Disease Detection Using Convolution Neural Network
    Kibriya, Hareem
    Rafique, Rimsha
    Ahmad, Wakeel
    Adnan, S. M.
    PROCEEDINGS OF 2021 INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES AND TECHNOLOGIES (IBCAST), 2021, : 346 - 351
  • [37] Forest Change Detection Using an Optimized Convolution Neural Network
    Senthilkumar, Radha
    Srinidhi, V.
    Neelavathi, S.
    Renuga Devi, S.
    IETE TECHNICAL REVIEW, 2022, 39 (01) : 135 - 142
  • [38] Detection of Disease in Tea Leaves Using Convolution Neural Network
    Bhowmik, Shyamtanu
    Talukdar, Anjan Kumar
    Sarma, Kandarpa Kumar
    2020 ADVANCED COMMUNICATION TECHNOLOGIES AND SIGNAL PROCESSING (IEEE ACTS), 2020,
  • [39] Fault Detection and Diagnosis in Electric Motors Using Convolution Neural Network and Short-Time Fourier Transform
    Ribeiro Junior, Ronny Francis
    dos Santos Areias, Isac Antonio
    Campos, Mateus Mendes
    Teixeira, Carlos Eduardo
    Borges da Silva, Luiz Eduardo
    Gomes, Guilherme Ferreira
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2022, 10 (07) : 2531 - 2542
  • [40] Fault Detection and Diagnosis in Electric Motors Using Convolution Neural Network and Short-Time Fourier Transform
    Ronny Francis Ribeiro Junior
    Isac Antônio dos Santos Areias
    Mateus Mendes Campos
    Carlos Eduardo Teixeira
    Luiz Eduardo Borges da Silva
    Guilherme Ferreira Gomes
    Journal of Vibration Engineering & Technologies, 2022, 10 : 2531 - 2542