Syntheses of multi-resonance frameworks towards narrowband organic light-emitting diodes

被引:1
|
作者
Zhang, Tong-Yuan [1 ]
Fan, Xiao-Chun [1 ]
Wang, Kai [1 ,2 ]
Zhang, Xiao-Hong [1 ,3 ]
机构
[1] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Suzhou 215123, Jiangsu, Peoples R China
[2] Soochow Univ, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Jiangsu, Peoples R China
[3] Soochow Univ, Jiangsu Key Lab Adv Negat Carbon Technol, Suzhou 215123, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
BORYLATION;
D O I
10.1039/d4cc05040a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Multi-resonance (MR)-type organic emitters are highly attractive in the field of organic light-emitting diodes because of their narrowband emission and thermally activated delayed fluorescence (TADF) properties. Compared with conventional TADF emitters, MR-featured emitters have more complex chemical structures and building logics. The core structures of MR emitters are MR frameworks, i.e., polyaromatic frameworks, precisely embedded with electron-donating and electron-withdrawing atoms/groups. Generally, electron-donating units can be easily introduced through the dedicated design of the precursors/intermediates, while integrating electron-withdrawing units is the key point and bottleneck for the synthesis of the MR framework. In this review, we briefly summarize the synthetic strategies of MR frameworks, focusing on the means of introducing various electron-withdrawing atoms/groups, which will aid the further exploration of MR-TADF emitters and their applications in OLEDs.
引用
收藏
页码:14168 / 14179
页数:12
相关论文
共 50 条
  • [31] White Organic Light-Emitting Diodes
    Gather, Malte C.
    Koehnen, Anne
    Meerholz, Klaus
    ADVANCED MATERIALS, 2011, 23 (02) : 233 - 248
  • [32] Simulation of organic light-emitting diodes
    Blades, CDJ
    Walker, AB
    SYNTHETIC METALS, 2000, 111 : 335 - 340
  • [33] Expanded multiple-resonance structure for highly efficient narrowband deep-blue organic light-emitting diodes
    Kang, Jihoon
    Jeon, Soon Ok
    Lee, Ha Lim
    Lim, Junseop
    Jo, Unhyeok
    Lee, Jun Yeob
    MATERIALS TODAY, 2023, 69 : 88 - 96
  • [34] Photochemistry of organic light-emitting diodes
    Ehara, Masahiro
    Nakatsuji, Hiroshi
    COMPUTATION IN MODERN SCIENCE AND ENGINEERING VOL 2, PTS A AND B, 2007, 2 : 306 - 310
  • [35] Electroplex in organic light-emitting diodes
    Tian, Miao-Miao
    Fan, Yi
    Gao, Jie
    Chen, Hong
    Faguang Xuebao/Chinese Journal of Luminescence, 2010, 31 (06): : 779 - 783
  • [36] Electroluminescence and Organic Light-Emitting Diodes
    Mal'tsev, E. I.
    Lypenko, D. A.
    Dmitriev, A. V.
    Vannikov, A. V.
    Burlov, A. S.
    Vlasenko, V. G.
    RUSSIAN JOURNAL OF COORDINATION CHEMISTRY, 2023, 49 (SUPPL 1) : S2 - S6
  • [37] Organic Light-Emitting Diodes with Ultrathin Emitting Nanolayers
    Zhou, Yubu
    Gao, Huayu
    Wang, Jing
    Yeung, Fion Sze Yan
    Lin, Shenghuang
    Li, Xianbo
    Liao, Shaolin
    Luo, Dongxiang
    Kwok, Hoi Sing
    Liu, Baiquan
    ELECTRONICS, 2023, 12 (14)
  • [38] Top-emitting organic light-emitting diodes
    Hofmann, Simone
    Thomschke, Michael
    Luessem, Bjoern
    Leo, Karl
    OPTICS EXPRESS, 2011, 19 (23): : A1250 - A1264
  • [39] Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes
    Capelli, Raffaella
    Toffanin, Stefano
    Generali, Gianluca
    Usta, Hakan
    Facchetti, Antonio
    Muccini, Michele
    NATURE MATERIALS, 2010, 9 (06) : 496 - 503
  • [40] Boron-Based Narrowband Multiresonance Delayed Fluorescent Emitters for Organic Light-Emitting Diodes
    Konidena, Rajendra Kumar
    Naveen, Kenkera Rayappa
    ADVANCED PHOTONICS RESEARCH, 2022, 3 (11):