Molecular-scale in-operando reconfigurable electronic hardware

被引:0
|
作者
Wang, Yulong [1 ]
Zhang, Qian [1 ,2 ]
Nickle, Cameron [3 ]
Zhang, Ziyu [1 ]
Leoncini, Andrea [1 ]
Qi, Dong-Chen [4 ]
Borrini, Alessandro [5 ,6 ]
Han, Yingmei [1 ]
del Barco, Enrique [3 ]
Thompson, Damien [7 ]
Nijhuis, Christian A. [5 ,6 ]
机构
[1] Natl Univ Singapore, Dept Chem, 3 Sci Dr 3, Singapore 117543, Singapore
[2] Chongqing Univ, Sch Chem & Chem Engn, Chongqing 400044, Peoples R China
[3] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA
[4] Queensland Univ Technol, Ctr Mat Sci, Sch Chem & Phys, Brisbane, Qld 4001, Australia
[5] Univ Twente, MESA Inst Nanotechnol, Fac Sci & Technol, Hybrid Mat Optoelect Grp,Dept Mol & Mat,Mol Ctr, NL-7500 AE Enschede, Netherlands
[6] Univ Twente, Fac Sci & Technol, Ctr Brain Inspired Nano Syst, NL-7500 AE Enschede, Netherlands
[7] Univ Limerick, Bernal Inst, Dept Phys, Limerick V94 T9PX, Ireland
基金
中国国家自然科学基金; 美国国家科学基金会; 爱尔兰科学基金会; 荷兰研究理事会; 澳大利亚研究理事会;
关键词
SINGLE-MOLECULE; CONDUCTANCE; DIODE; TRANSPORT; METAL;
D O I
10.1039/d4nh00211c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
It is challenging to reconfigure devices at molecular length scales. Here we report molecular junctions based on molecular switches that toggle stably and reliably between multiple operations to reconfigure electronic devices at molecular length scales. Rather than static on/off switches that always revert to the same state, our voltage-driven molecular device dynamically switches between high and low conduction states during six consecutive proton-coupled electron transfer steps. By changing the applied voltage, different states are accessed resulting in in operando reconfigurable electronic functionalities of variable resistor, diode, memory, and NDR (negative differential conductance). The switching behavior is voltage driven but also has time-dependent features making it possible to access different memory states. This multi-functional switch represents molecular scale hardware operable in solid-state devices (in the form of electrode-monolayer-electrode junctions) that are interesting for areas of research where it is important to have access to time-dependent changes such as brain-inspired (or neuromorphic) electronics.
引用
收藏
页码:349 / 358
页数:10
相关论文
共 50 条
  • [41] Modeling of Actual-Size Organic Electronic Devices from Efficient Molecular-Scale Simulations
    Li, Haoyuan
    Bredas, Jean-Luc
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (29)
  • [42] Proof-of-principle of molecular-scale arithmetic
    de, Silva, A. Prasanna
    McClenaghan, Nathan D.
    1600, ACS, Washington, DC, USA (122):
  • [43] Analytical model for molecular-scale charge transport
    Peterson, IR
    Vuillaume, D
    Metzger, RM
    JOURNAL OF PHYSICAL CHEMISTRY A, 2001, 105 (19): : 4702 - 4707
  • [44] Molecular-Scale Electronics: From Concept to Function
    Xiang, Dong
    Wang, Xiaolong
    Jia, Chuancheng
    Lee, Takhee
    Guo, Xuefeng
    CHEMICAL REVIEWS, 2016, 116 (07) : 4318 - 4440
  • [45] Polymerization within a molecular-scale stereoregular template
    Takeshi Serizawa
    Ken-ichi Hamada
    Mitsuru Akashi
    Nature, 2004, 429 : 52 - 55
  • [46] Molecular-scale electronics grown chemically in a beaker
    Wong, W
    ELECTRONIC DESIGN, 2001, 49 (26) : 28 - 28
  • [47] Energy conversion and transport in molecular-scale junctions
    Zhang, Haixin
    Zhu, Yunxuan
    Duan, Ping
    Shiri, Mehrdad
    Yelishala, Sai Chandra
    Shen, Shaocheng
    Song, Ziqi
    Jia, Chuancheng
    Guo, Xuefeng
    Cui, Longji
    Wang, Kun
    APPLIED PHYSICS REVIEWS, 2024, 11 (04):
  • [48] eScience for molecular-scale simulations and the eMinerals project
    Salje, E. K. H.
    Artacho, E.
    Austen, K. F.
    Bruin, R. P.
    Calleja, M.
    Chappell, H. F.
    Chiang, G. -T.
    Dove, M. T.
    Frame, I.
    Goodwin, A. L.
    van Dam, K. Kleese
    Marmier, A.
    Parker, S. C.
    Pruneda, J. M.
    Todorov, I. T.
    Trachenko, K.
    Tyer, R. P.
    Walker, A. M.
    White, T. O. H.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1890): : 967 - 985
  • [49] Molecular-scale mechanisms of crystal growth in barite
    Pina, CM
    Becker, U
    Risthaus, P
    Bosbach, D
    Putnis, A
    NATURE, 1998, 395 (6701) : 483 - 486
  • [50] Polymer imprint lithography with molecular-scale resolution
    Hua, F
    Sun, YG
    Gaur, A
    Meitl, MA
    Bilhaut, L
    Rotkina, L
    Wang, JF
    Geil, P
    Shim, M
    Rogers, JA
    Shim, A
    NANO LETTERS, 2004, 4 (12) : 2467 - 2471