Improvement of the Stability of Quantum-Dot Light Emitting Diodes Using Inorganic HfOx Hole Transport Layer

被引:0
|
作者
Yun, Jung Min [1 ,2 ]
Park, Min Ho [1 ,2 ]
Kim, Yu Bin [1 ,2 ]
Choi, Min Jung [1 ,2 ]
Kim, Seunghwan [3 ,4 ]
Yi, Yeonjin [4 ]
Park, Soohyung [3 ,5 ]
Kang, Seong Jun [1 ,2 ]
机构
[1] Kyung Hee Univ, Dept Adv Mat Engn Informat & Elect, Yongin 17104, South Korea
[2] Kyung Hee Univ, Integrated Educ Program Frontier Mat BK21 Four, Yongin 17104, South Korea
[3] Korea Inst Sci & Technol KIST, Adv Anal & Data Ctr, Seoul 02792, South Korea
[4] Yonsei Univ, Dept Phys, Seoul 03722, South Korea
[5] Univ Sci & Technol UST, KIST Sch, Div Nanosci & Technol, Seoul 02792, South Korea
基金
新加坡国家研究基金会;
关键词
QLEDs; all-inorganic device; quantum dots; stable; oxygen vacancies; optoelectronics; solution process; HIGHLY EFFICIENT;
D O I
10.3390/ma17194739
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
One of the major challenges in QLED research is improving the stability of the devices. In this study, we fabricated all inorganic quantum-dot light emitting diodes (QLEDs) using hafnium oxide (HfOx) as the hole transport layer (HTL), a material commonly used for insulator. Oxygen vacancies in HfOx create defect states below the Fermi level, providing a pathway for hole injection. The concentration of these oxygen vacancies can be controlled by the annealing temperature. We optimized the all-inorganic QLEDs with HfOx as the HTL by changing the annealing temperature. The optimized QLEDs with HfOx as the HTL showed a maximum luminance and current efficiency of 66,258 cd/m2 and 9.7 cd/A, respectively. The fabricated all-inorganic QLEDs exhibited remarkable stability, particularly when compared to devices using organic materials for the HTL. Under extended storage in ambient conditions, the all-inorganic device demonstrated a significantly enhanced operating lifetime (T50) of 5.5 h, which is 11 times longer than that of QLEDs using an organic HTL. These results indicate that the all-inorganic QLEDs structure, with ITO/MoO3/HfOx/QDs/ZnMgO/Al, exhibits superior stability compared to organic-inorganic hybrid QLEDs.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Polymeric Hole Transport Materials for Red CsPbI3 Perovskite Quantum-Dot Light-Emitting Diodes
    Tseng, Zong-Liang
    Lin, Shih-Hung
    Tang, Jian-Fu
    Huang, Yu-Ching
    Cheng, Hsiang-Chih
    Huang, Wei-Lun
    Lee, Yi-Ting
    Chen, Lung-Chien
    POLYMERS, 2021, 13 (06)
  • [42] Nondestructive Direct Patterning of Both Hole Transport and Emissive Layers for Pixelated Quantum-Dot Light-Emitting Diodes
    Yi, Yuan-Qiu-Qiang
    Su, Fuyan
    Xu, Wenya
    Zhang, Qing
    Zhang, Shuo
    Xie, Liming
    Su, Wenming
    Cui, Zheng
    Luscombe, Christine K.
    ACS NANO, 2024, 18 (24) : 15915 - 15924
  • [43] Enhanced efficiency and high temperature stability of hybrid quantum dot light-emitting diodes using molybdenum oxide doped hole transport layer
    Yun, Jinyoung
    Kim, Jaeyun
    Jung, Byung Jun
    Kim, Gyutae
    Kwak, Jeonghun
    RSC ADVANCES, 2019, 9 (28) : 16252 - 16257
  • [44] Device Characteristics of Inverted Red Colloidal Quantum-Dot Light-Emitting Diodes Depending on Hole Transport Layers
    Lee, Donggu
    Lim, Jaehoon
    Park, Myeongjin
    Kang, Chan-Mo
    Lee, Hyunkoo
    SCIENCE OF ADVANCED MATERIALS, 2021, 13 (05) : 917 - 921
  • [45] Enhanced quantum-dot light-emitting diodes using gold nanorods
    Cho, Nam-Kwang
    Lee, Sang Moo
    Song, Kigook
    Kang, Seong Jun
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2015, 67 (09) : 1667 - 1671
  • [46] On the degradation mechanisms of quantum-dot light-emitting diodes
    Chen, Song
    Cao, Weiran
    Liu, Taili
    Tsang, Sai-Wing
    Yang, Yixing
    Yan, Xiaolin
    Qian, Lei
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [47] Enhanced quantum-dot light-emitting diodes using gold nanorods
    Nam-Kwang Cho
    Sang Moo Lee
    Kigook Song
    Seong Jun Kang
    Journal of the Korean Physical Society, 2015, 67 : 1667 - 1671
  • [48] On the electroluminescence overshoot of quantum-dot light-emitting diodes
    Yu, Rongmei
    Yin, Furong
    Pu, Chunying
    Zhou, Dawei
    Ji, Wenyu
    OPTICS LETTERS, 2023, 48 (11) : 3059 - 3062
  • [49] On the degradation mechanisms of quantum-dot light-emitting diodes
    Song Chen
    Weiran Cao
    Taili Liu
    Sai-Wing Tsang
    Yixing Yang
    Xiaolin Yan
    Lei Qian
    Nature Communications, 10
  • [50] Effect of Postannealing on Quantum-Dot Light-Emitting Diodes
    Hou, Wenjun
    Wang, Tianfeng
    Guo, Yulin
    Liang, Wenlin
    Wu, Longjia
    Cao, Weiran
    Lin, Xiongfeng
    ACS APPLIED OPTICAL MATERIALS, 2024, 2 (03): : 368 - 372