Investigating the influence of graphene coating thickness on Al0.3CoCrFeNi high-entropy alloy using molecular dynamics simulation

被引:4
|
作者
Zhao, Guanghui [1 ,2 ,3 ]
Liu, Zhimin [1 ,2 ]
Zhang, Peng [1 ,2 ]
Li, Juan [1 ,2 ]
Li, Huaying [1 ,2 ]
Ma, Lifeng [1 ,2 ]
机构
[1] Taiyuan Univ Sci & Technol, Taiyuan 030024, Peoples R China
[2] Shanxi Prov Key Lab Met Device Design Theory & Tec, Taiyuan 030024, Peoples R China
[3] Shanxi Elect Sci & Technol Inst, Linfen 041000, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Graphene coating; Molecular dynamics; Nanoindentation; Strengthening mechanism; Stress and strain; Cyclic deterioration; NANOINDENTATION; DEPTH; FILM;
D O I
10.1016/j.surfcoat.2024.131255
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Graphene was proven to be an excellent surface-strengthening material. However, there needs to be more literature explaining its strengthening mechanism at the atomic level. This study systematically investigated the surface strengthening mechanism of graphene coating on the Al0.3CoCrFeNi high-entropy alloy (HEA) and the influence of loading-unloading cycles on the formation of internal defects in the material through molecular dynamics (MD) simulations at the atomic level. Research results show that the internal stress concentration in HEA without graphene coating leads to a more considerable residual depth after unloading. With the addition of a graphene coating, the material's stress area increases, effectively alleviating stress concentration and reducing residual depth. Furthermore, the lengths of Lomer-Cottrell dislocation locks and Hirth dislocation locks inside the material increase, enhancing the material's deformation resistance. The more layers of graphene, the larger the stress distribution area and the greater the hardness. Under the same indentation force, the number of HCP structures and amorphous structures inside the material is inversely proportional to the thickness of the graphene layers. In addition, after multiple loading and unloading cycles, the hardness of HEA/GP materials basically remains unchanged, while internal defects increase and residual depth increases.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Orientation and temperature dependence of a planar slip and twinning in single crystals of Al0.3CoCrFeNi high-entropy alloy
    Kireeva, I., V
    Chumlyakov, Yu, I
    Pobedennaya, Z., V
    Vyrodova, A. V.
    Kuksgauzen, I., V
    Kuksgauzen, D. A.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 737 : 47 - 60
  • [42] High Strength and Deformation Mechanisms of Al0.3CoCrFeNi High-Entropy Alloy Thin Films Fabricated by Magnetron Sputtering
    Liao, Wei-Bing
    Zhang, Hongti
    Liu, Zhi-Yuan
    Li, Pei-Feng
    Huang, Jian-Jun
    Yu, Chun-Yan
    Lu, Yang
    ENTROPY, 2019, 21 (02)
  • [43] Dynamic strain aging of Al0.3CoCrFeNi high entropy alloy single crystals
    Yasuda, Hiroyuki Y.
    Shigeno, Kyosuke
    Nagase, Takeshi
    SCRIPTA MATERIALIA, 2015, 108 : 80 - 83
  • [44] Microstructure and mechanical properties of Al0.3CoCrFeNi high-entropy alloy joints brazed using a FeCoCrNiCu/Ti composite interlayer
    Zheng, Mushi
    Wu, Shaowang
    Si, Xiaoqing
    Gao, Jianwei
    Li, Chun
    Qi, Junlei
    Cao, Jian
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 30 : 6889 - 6896
  • [45] Static recrystallization and grain growth behaviour of Al0.3CoCrFeNi high entropy alloy
    Annasamy, Murugesan
    Haghdadi, Nima
    Taylor, Adam
    Hodgson, Peter
    Fabijanic, Daniel
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 754 : 282 - 294
  • [46] Fatigue behavior of ultrafine grained triplex Al0.3CoCrFeNi high entropy alloy
    Liu, Kaimiao
    Komarasamy, Mageshwari
    Gwalani, Bharat
    Shukla, Shivakant
    Mishra, Rajiv S.
    SCRIPTA MATERIALIA, 2019, 158 : 116 - 120
  • [47] Microstructure and Properties of Al0.3CoCrFeNi High Entropy Alloy with Different Nb Contents
    Zhao Z.
    Huang Z.
    Tao P.
    Chen F.
    Yan Z.
    Xiyou Jinshu/Chinese Journal of Rare Metals, 2024, 48 (03): : 336 - 344
  • [48] Thermal physical properties of high entropy alloy Al0.3CoCrFeNi at elevated temperatures
    Sun, Zerui
    Shi, Changgen
    Gao, Li
    Lin, Sunlang
    Li, Wenxuan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 901
  • [49] Thermal physical properties of high entropy alloy Al0.3CoCrFeNi at elevated temperatures
    Sun, Zerui
    Shi, Changgen
    Gao, Li
    Lin, Sunlang
    Li, Wenxuan
    Journal of Alloys and Compounds, 2022, 901
  • [50] Probing the crystal structure and dislocation evolution in single crystal Al0.3CoCrFeNi high-entropy alloy under nanoindentation
    Wang, Qian
    Wang, Bing
    Yuan, Weifeng
    Gu, Bin
    MATERIALS TODAY COMMUNICATIONS, 2023, 34