Investigating the influence of graphene coating thickness on Al0.3CoCrFeNi high-entropy alloy using molecular dynamics simulation

被引:4
|
作者
Zhao, Guanghui [1 ,2 ,3 ]
Liu, Zhimin [1 ,2 ]
Zhang, Peng [1 ,2 ]
Li, Juan [1 ,2 ]
Li, Huaying [1 ,2 ]
Ma, Lifeng [1 ,2 ]
机构
[1] Taiyuan Univ Sci & Technol, Taiyuan 030024, Peoples R China
[2] Shanxi Prov Key Lab Met Device Design Theory & Tec, Taiyuan 030024, Peoples R China
[3] Shanxi Elect Sci & Technol Inst, Linfen 041000, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Graphene coating; Molecular dynamics; Nanoindentation; Strengthening mechanism; Stress and strain; Cyclic deterioration; NANOINDENTATION; DEPTH; FILM;
D O I
10.1016/j.surfcoat.2024.131255
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Graphene was proven to be an excellent surface-strengthening material. However, there needs to be more literature explaining its strengthening mechanism at the atomic level. This study systematically investigated the surface strengthening mechanism of graphene coating on the Al0.3CoCrFeNi high-entropy alloy (HEA) and the influence of loading-unloading cycles on the formation of internal defects in the material through molecular dynamics (MD) simulations at the atomic level. Research results show that the internal stress concentration in HEA without graphene coating leads to a more considerable residual depth after unloading. With the addition of a graphene coating, the material's stress area increases, effectively alleviating stress concentration and reducing residual depth. Furthermore, the lengths of Lomer-Cottrell dislocation locks and Hirth dislocation locks inside the material increase, enhancing the material's deformation resistance. The more layers of graphene, the larger the stress distribution area and the greater the hardness. Under the same indentation force, the number of HCP structures and amorphous structures inside the material is inversely proportional to the thickness of the graphene layers. In addition, after multiple loading and unloading cycles, the hardness of HEA/GP materials basically remains unchanged, while internal defects increase and residual depth increases.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Nanoindentation Creep Behavior of an Al0.3CoCrFeNi High-Entropy Alloy
    Zhang, Lijun
    Yu, Pengfei
    Cheng, Hu
    Zhang, Huan
    Diao, Haoyan
    Shi, Yunzhu
    Chen, Bilin
    Chen, Peiyong
    Feng, Rui
    Bai, Jie
    Jing, Qin
    Ma, Mingzhen
    Liaw, P. K.
    Li, Gong
    Liu, Riping
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2016, 47A (12): : 5871 - 5875
  • [2] Annealing effect for the Al0.3CoCrFeNi high-entropy alloy fibers
    Li, Dongyue
    Gao, Michael C.
    Hawk, Jeffrey A.
    Zhang, Yong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 778 : 23 - 29
  • [3] Nanoindentation Creep Behavior of an Al0.3CoCrFeNi High-Entropy Alloy
    Lijun Zhang
    Pengfei Yu
    Hu Cheng
    Huan Zhang
    Haoyan Diao
    Yunzhu Shi
    Bilin Chen
    Peiyong Chen
    Rui Feng
    Jie Bai
    Qin Jing
    Mingzhen Ma
    P. K. Liaw
    Gong Li
    Riping Liu
    Metallurgical and Materials Transactions A, 2016, 47 : 5871 - 5875
  • [4] Influence of mechanically activated annealing on phase evolution in Al0.3CoCrFeNi high-entropy alloy
    Rahul John
    Anirudha Karati
    Mohan Muralikrishna Garlapati
    Mayur Vaidya
    Rahul Bhattacharya
    Daniel Fabijanic
    B. S. Murty
    Journal of Materials Science, 2019, 54 : 14588 - 14598
  • [5] Influence of mechanically activated annealing on phase evolution in Al0.3CoCrFeNi high-entropy alloy
    John, Rahul
    Karati, Anirudha
    Garlapati, Mohan Muralikrishna
    Vaidya, Mayur
    Bhattacharya, Rahul
    Fabijanic, Daniel
    Murty, B. S.
    JOURNAL OF MATERIALS SCIENCE, 2019, 54 (23) : 14588 - 14598
  • [6] The Precipitation Behavior in Al0.3CoCrFeNi High-Entropy Alloy Affected by Deformation and Annealing
    Zhang, Jinlong
    Qiu, Risheng
    Tan, Xinu
    Quan, Xuantong
    Song, Bo
    Liu, Qing
    METALS, 2023, 13 (01)
  • [7] Hardening-softening of Al0.3CoCrFeNi high-entropy alloy under nanoindentation
    Guo, Qingwei
    Hou, Hua
    Pan, Yue
    Pei, Xiaolong
    Song, Zhuo
    Liaw, Peter K.
    Zhao, Yuhong
    MATERIALS & DESIGN, 2023, 231
  • [8] High-Strength Behavior of the Al0.3CoCrFeNi High-Entropy Alloy Single Crystals
    Kireeva, Irina, V
    Chumlyakov, Yuriy, I
    Pobedennaya, Zinaida, V
    Vyrodova, Anna V.
    Saraeva, Anastasia A.
    METALS, 2020, 10 (09) : 1 - 11
  • [9] Insight into the kinetic stabilization of Al0.3CoCrFeNi high-entropy alloys
    Anber, Elaf A.
    Lang, Andrew C.
    Lass, Eric A.
    Suri, Pranav Kumar
    Hart, James L.
    D'Antuono, Daniel Scotto
    Diao, Haoyan
    Feng, Rui
    Doherty, Roger
    Liaw, Peter K.
    Taheri, Mitra L.
    MATERIALIA, 2020, 14
  • [10] Hot Deformation and Subsequent Annealing on the Microstructure and Hardness of an Al0.3CoCrFeNi High-entropy Alloy
    Jun Wang
    Hongchao Li
    Haoxue Yang
    Yu Zhang
    William Yi Wang
    Jinshan Li
    Acta Metallurgica Sinica (English Letters), 2021, 34 : 1527 - 1536