A hybrid deep learning framework for short-term load forecasting with improved data cleansing and preprocessing techniques

被引:1
|
作者
Iqbal, Muhammad Sajid [1 ]
Adnan, Muhammad [1 ]
Mohamed, Salah Eldeen Gasim [2 ]
Tariq, Muhammad [3 ]
机构
[1] Natl Univ Comp & Emerging Sci, Dept Elect Engn, Chiniot Faisalabad, Pakistan
[2] Sudan Univ Sci & Technol, Dept Elect Power & Machines, Khartoum, Sudan
[3] Natl Univ Comp & Emerging Sci, Dept Elect Engn, Islamabad, Pakistan
关键词
BiGRU; BiLSTM; Deep learning; Load forecasting; Pre-processing; Smart grids; NEURAL-NETWORK; CONSUMPTION; MODEL;
D O I
10.1016/j.rineng.2024.103560
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The dynamic variations in connected loads and the intermittent nature of renewable energy sources significantly impact smart grid reliability. Accurate load and generation forecasting stand pivotal for enhancing grid reliability and efficient operations. In this study, a comprehensive four-step approach is introduced for short-term load forecasting (STLF) aimed at precisely estimating power demand and generation. The process unfolds with data collection, followed by rigorous standardization, preprocessing, and cleansing of demand and generation data. Subsequently, a hybrid deep learning model, comprising bidirectional long short-term memory (BiLSTM), bidirectional gated recurrent unit (BiGRU), and a fully connected layer is trained using the clean data. This model harnesses the temporal dependencies within the data for accurate predictions. The model's performance is then evaluated using mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE), providing forecasted values for both generation and demand on minute, hourly, daily, and weekly intervals. Notably, the proposed approach achieves a remarkable MSE of 0.0058 for load forecasting and 0.0033 for generation forecasting. Comparative analysis with state-of-theart (SOTA) techniques in terms of accuracy and computational cost underscores the superior accuracy of the proposed framework in forecasting both generation and demand. Importantly, the proposed approach bridges the gap in reliability enhancement for smart grids operating, a facet lacking in many existing methodologies. This signifies the potential of the proposed approach to bolster smart grid reliability, ensuring more reliable operations.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] Development and application of an evolutionary deep learning framework of LSTM based on improved grasshopper optimization algorithm for short-term load forecasting
    Hu, Haowen
    Xia, Xin
    Luo, Yuanlin
    Zhang, Chu
    Nazir, Muhammad Shahzad
    Peng, Tian
    JOURNAL OF BUILDING ENGINEERING, 2022, 57
  • [32] Development and application of an evolutionary deep learning framework of LSTM based on improved grasshopper optimization algorithm for short-term load forecasting
    Hu, Haowen
    Xia, Xin
    Luo, Yuanlin
    Zhang, Chu
    Nazir, Muhammad Shahzad
    Peng, Tian
    JOURNAL OF BUILDING ENGINEERING, 2022, 57
  • [33] Short-Term Load Forecasting Based on Improved Extreme Learning Machine
    Li, Jie
    Song, Zhongyou
    Zhong, Yuanhong
    Zhang, Zhaoyuan
    Li, Jianhong
    2017 IEEE 2ND INTERNATIONAL CONFERENCE ON BIG DATA ANALYSIS (ICBDA), 2017, : 584 - 588
  • [34] Short-term Load Forecasting on Smart Meter via Deep Learning
    Khatri, Ishan
    Dong, Xishuang
    Attia, John
    Qian, Lijun
    2019 51ST NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2019,
  • [35] Review of Deep Learning Application for Short-Term Household Load Forecasting
    Apolo Penaloza, Ana Karen
    Balbinot, Alexandre
    Leborgne, Roberto Chouhy
    2020 IEEE PES TRANSMISSION & DISTRIBUTION CONFERENCE AND EXHIBITION - LATIN AMERICA (T&D LA), 2020,
  • [36] Deep Learning Based Short-Term Load Forecasting for Urban Areas
    Maksut, M.
    Karbozov, A.
    Myrzaliyeva, M.
    Nunna, H. S. V. S. Kumar
    Jamwal, Prashant K.
    Doolla, Suryanarayana
    2019 IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING, 2019,
  • [37] Comparison of the Deep Learning Performance for Short-Term Power Load Forecasting
    Son, Namrye
    SUSTAINABILITY, 2021, 13 (22)
  • [38] Enhanced Automated Deep Learning Application for Short-Term Load Forecasting
    Laitsos, Vasileios
    Vontzos, Georgios
    Bargiotas, Dimitrios
    Daskalopulu, Aspassia
    Tsoukalas, Lefteri H.
    MATHEMATICS, 2023, 11 (13)
  • [39] A comprehensive review on deep learning approaches for short-term load forecasting
    Eren, Yavuz
    Kucukdemiral, Ibrahim
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 189
  • [40] Short-term load forecasting based on CEEMDAN and dendritic deep learning
    Song, Keyu
    Yu, Yang
    Zhang, Tengfei
    Li, Xiaosi
    Lei, Zhenyu
    He, Houtian
    Wang, Yizheng
    Gao, Shangce
    KNOWLEDGE-BASED SYSTEMS, 2024, 294