Hierarchical marker genes selection in scRNA-seq analysis

被引:0
|
作者
Sun, Yutong [1 ]
Qiu, Peng [2 ,3 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA USA
[2] Georgia Inst Technol, Dept Biomed Engn, Atlanta, GA 30332 USA
[3] Emory Univ, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Compendex;
D O I
10.1371/journal.pcbi.1012643
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
When analyzing scRNA-seq data containing heterogeneous cell populations, an important task is to select informative marker genes to distinguish various cell clusters and annotate the clusters with biologically meaningful cell types. In existing analysis methods and pipelines, marker genes are typically identified using a one-vs-all strategy, examining differential expression between one cell cluster versus the combination of all other cell clusters. However, this strategy applied to cell clusters belonging to closely related cell types often generates overlapping marker genes, which capture the common signature of closely related cell clusters but provide limited information for distinguishing them. To address the limitations of the one-vs-all strategy, we propose a hierarchical marker gene selection strategy that groups similar cell clusters and selects marker genes in a hierarchical manner. This strategy is able to improve the accuracy and interpretability of cell type identification in single-cell RNA-seq data.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Feature selection methods affect the performance of scRNA-seq data integration and querying
    Zappia, Luke
    Richter, Sabrina
    Ramirez-Suastegui, Ciro
    Kfuri-Rubens, Raphael
    Vornholz, Larsen
    Wang, Weixu
    Dietrich, Oliver
    Frishberg, Amit
    Luecken, Malte D.
    Theis, Fabian J.
    NATURE METHODS, 2025, 22 (04)
  • [32] An Ensemble Machine Learning Approach for Benchmarking and Selection of scRNA-seq Integration Methods
    Zhao, Konghao
    Bhandari, Sapan
    Whitener, Nathan P.
    Grayson, Jason M.
    Khuri, Natalia
    14TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, BCB 2023, 2023,
  • [33] Droplet scRNA-seq is not zero-inflated
    Svensson, Valentine
    NATURE BIOTECHNOLOGY, 2020, 38 (02) : 147 - 150
  • [34] Advancing ScRNA-Seq Data Integration via a Novel Gene Selection Method
    Lazaros, Konstantinos
    Exarchos, Themis
    Maglogiannis, Ilias
    Vlamos, Panagiotis
    Vrahatis, Aristidis G.
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, PT I, AIAI 2024, 2024, 711 : 31 - 41
  • [35] Computational approaches for interpreting scRNA-seq data
    Rostom, Raghd
    Svensson, Valentine
    Teichmann, Sarah A.
    Kar, Gozde
    FEBS LETTERS, 2017, 591 (15) : 2213 - 2225
  • [36] Uncovering functional lncRNAs by scRNA-seq with ELATUS
    Goni, Enrique
    Mas, Aina Maria
    Gonzalez, Jovanna
    Abad, Amaya
    Santisteban, Marta
    Fortes, Puri
    Huarte, Maite
    Hernaez, Mikel
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [37] Compression of quantification uncertainty for scRNA-seq counts
    Van Buren, Scott
    Sarkar, Hirak
    Srivastava, Avi
    Rashid, Naim U.
    Patro, Rob
    Love, Michael, I
    BIOINFORMATICS, 2021, 37 (12) : 1699 - 1707
  • [38] Cerebro: interactive visualization of scRNA-seq data
    Hillje, Roman
    Pelicci, Pier Giuseppe
    Luzi, Lucilla
    BIOINFORMATICS, 2020, 36 (07) : 2311 - 2313
  • [39] Immunopipe: A comprehensive and flexible scRNA-seq and scTCR-seq data analysis pipeline
    Wang, Panwen
    Dong, Haidong
    Yu, Yue
    Zhang, Shuwen
    Sun, Zhifu
    Kocher, Jean-Pierre A.
    Wang, Junwen
    Yi, Lin
    Li, Ying
    CANCER RESEARCH, 2024, 84 (06)
  • [40] ELLIPSIS: robust quantification of splicing in scRNA-seq
    Van Hecke, Marie
    Beerenwinkel, Niko
    Lootens, Thibault
    Fostier, Jan
    Raedt, Robrecht
    Marchal, Kathleen
    BIOINFORMATICS, 2025, 41 (02)