Intrinsic and Extrinsic Photogalvanic Effects in Twisted Bilayer Graphene

被引:0
|
作者
Peñaranda, Fernando [1 ]
Ochoa, Héctor [2 ]
De Juan, Fernando [1 ,3 ]
机构
[1] Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia-San Sebastian,20018, Spain
[2] Department of Physics, Columbia University, New York,NY,10027, United States
[3] IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, Bilbao,48013, Spain
关键词
Band inversion - Bilayer Graphene - Extrinsic effects - Gate potentials - Intrinsic effects - Lattice structures - Magic angle - Normal incidence - Photogalvanic effects - Twisted bilayers;
D O I
10.1103/PhysRevLett.133.256603
中图分类号
学科分类号
摘要
The chiral lattice structure of twisted bilayer graphene with D6 symmetry allows for intrinsic photogalvanic effects only at off-normal incidence, while additional extrinsic effects are known to be induced by a substrate or a gate potential. In this Letter, we first compute the intrinsic effects and show they reverse sign at the magic angle, revealing a band inversion at the Γ point. We next consider different extrinsic effects, showing how they can be used to track the strengths of the substrate coupling or electric displacement field. We also show that the approximate particle-hole symmetry implies stringent constraints on the chemical potential dependence of all photocurrents. A detailed comparison of intrinsic vs extrinsic photocurrents therefore reveals a wealth of information about the band structure and can also serve as a benchmark to constrain the symmetry breaking patterns of correlated states. © 2024 American Physical Society.
引用
收藏
相关论文
共 50 条
  • [21] Thermal conductivity of twisted bilayer graphene
    Li, Hongyang
    Ying, Hao
    Chen, Xiangping
    Nika, Denis L.
    Cocemasov, Alexandr I.
    Cai, Weiwei
    Balandin, Alexander A.
    Chen, Shanshan
    NANOSCALE, 2014, 6 (22) : 13402 - 13408
  • [22] Moire phonons in twisted bilayer graphene
    Koshino, Mikito
    Son, Young-Woo
    PHYSICAL REVIEW B, 2019, 100 (07)
  • [23] Continuum model of the twisted graphene bilayer
    Lopes dos Santos, J. M. B.
    Peres, N. M. R.
    Castro Neto, A. H.
    PHYSICAL REVIEW B, 2012, 86 (15):
  • [24] Raman spectroscopy of twisted bilayer graphene
    Jorio, Ado
    Cancado, Luiz Gustavo
    SOLID STATE COMMUNICATIONS, 2013, 175 : 3 - 12
  • [25] Unusual magnetotransport in twisted bilayer graphene
    Finney, Joe
    Sharpe, Aaron L.
    Fox, Eli J.
    Hsueh, Connie L.
    Parker, Daniel E.
    Yankowitz, Matthew
    Chen, Shaowen
    Watanabe, Kenji
    Taniguchi, Takashi
    Dean, Cory R.
    Vishwanath, Ashvin
    Kastner, M. A.
    Goldhaber-Gordon, David
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (16)
  • [26] Strain fields in twisted bilayer graphene
    Nathanael P. Kazmierczak
    Madeline Van Winkle
    Colin Ophus
    Karen C. Bustillo
    Stephen Carr
    Hamish G. Brown
    Jim Ciston
    Takashi Taniguchi
    Kenji Watanabe
    D. Kwabena Bediako
    Nature Materials, 2021, 20 : 956 - 963
  • [27] Correlated insulators in twisted bilayer graphene
    Mandal, Ipsita
    Yao, Jia
    Mueller, Erich J.
    PHYSICAL REVIEW B, 2021, 103 (12)
  • [28] Helical dislocation in twisted bilayer graphene
    Rakib, Tawfiqur
    Pochet, Pascal
    Ertekin, Elif
    Johnson, Harley T.
    EXTREME MECHANICS LETTERS, 2023, 63
  • [29] Kondo phase in twisted bilayer graphene
    Zhou, Geng-Dong
    Wang, Yi-Jie
    Tong, Ninghua
    Song, Zhi-Da
    PHYSICAL REVIEW B, 2024, 109 (04)
  • [30] Twisted Bilayer Graphene: Moire with a Twist
    Dai, Shuyang
    Xiang, Yang
    Srolovitz, David J.
    NANO LETTERS, 2016, 16 (09) : 5923 - 5927