A Kernel-Based Approach to Errors-in-Variables Identification of Stable Multivariable Linear Systems

被引:0
|
作者
Cerone, Vito [1 ]
Fadda, Edoardo [2 ]
Regruto, Diego [1 ]
机构
[1] Politecn Torino, Dept Control & Comp Engn, I-10129 Turin, Italy
[2] Politecn Torino, Dept Math Sci, I-10129 Turin, Italy
关键词
Kernel; Linear systems; MIMO communication; Computational modeling; Optimization; Hilbert space; System identification; reproducing kernel Hilbert spaces; errors-in-variables; DIMENSION;
D O I
10.1109/TAC.2024.3410835
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we present a kernel-based nonparametric approach to identifying stable multi-input multioutput (MIMO) linear systems in the presence of bounded noise affecting both the input and the output measurements. First, we formulate the considered problem in terms of robust optimization techniques. Then, we show that the formulated robust optimization problem can be solved using semidefinite optimization. Since the involved optimization problem is computationally demanding, we also provide a result that allows the user to compute a bound on the approximation error introduced by considering reduced complexity models. We present some simulation examples to show the effectiveness of the proposed approach. Finally, we apply the proposed identification method to the dataset experimentally collected on a linear electronic filter.
引用
收藏
页码:8481 / 8496
页数:16
相关论文
共 50 条
  • [1] Identification of errors-in-variables systems: An asymptotic approach
    Liu, Xin
    Zhu, Yucai
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2017, 31 (08) : 1126 - 1138
  • [2] The Frisch scheme in multivariable errors-in-variables identification
    Diversi, Roberto
    Guidorzi, Roberto
    EUROPEAN JOURNAL OF CONTROL, 2017, 37 : 43 - 53
  • [3] Nonparametric identification of linear dynamic errors-in-variables systems
    Zhang, Erliang
    Pintelon, Rik
    AUTOMATICA, 2018, 94 : 416 - 425
  • [4] A concave approach to errors-in-variables sparse linear system identification
    Fosson, S. M.
    Cerone, V
    Regruto, D.
    Abdalla, T.
    IFAC PAPERSONLINE, 2021, 54 (07): : 298 - 303
  • [5] Identification Fractional Linear Dynamic Systems with fractional errors-in-variables
    Ivanov, D. V.
    Ivanov, A. V.
    INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGIES IN BUSINESS AND INDUSTRY 2016, 2017, 803
  • [6] ARX Model Estimation of Multivariable Errors-in-Variables Systems
    Liu, Xin
    Zhu, Yucai
    IFAC PAPERSONLINE, 2018, 51 (15): : 874 - 879
  • [7] Recursive identification of errors-in-variables systems
    Chen, Han-Fu
    2006 CHINESE CONTROL CONFERENCE, VOLS 1-5, 2006, : 1576 - 1580
  • [8] Subspace-based methods for the identification of multivariable dynamic errors-in-variables models
    Chou, CT
    Verhaegen, MH
    PROCEEDINGS OF THE 35TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1996, : 3636 - 3641
  • [9] Identification of multivariable dynamic errors-in-variables system with arbitrary inputs
    Zhang, Erliang
    Pintelon, Rik
    AUTOMATICA, 2017, 82 : 69 - 78
  • [10] Subspace algorithms for the identification of multivariable dynamic errors-in-variables models
    Chou, CT
    Verhaegen, M
    AUTOMATICA, 1997, 33 (10) : 1857 - 1869