Composite dyadic models for spatio-temporal data

被引:0
|
作者
Schwob, Michael R. [1 ]
Hooten, Mevin B. [1 ]
Narasimhan, Vagheesh [1 ,2 ,3 ]
机构
[1] Univ Texas Austin, Dept Stat & Data Sci, Welch 5-216,105 24th St D9800, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Integrat Biol, Austin, TX 78712 USA
[3] Dell Med Sch, Dept Populat Hlth, Austin, TX 78712 USA
关键词
advection; Bayesian; diffusion; landscape genomics; potential surface; POPULATION-STRUCTURE; CIRCUIT-THEORY; ECOLOGY; LIKELIHOOD; INFERENCE; GEOGRAPHY;
D O I
10.1093/biomtc/ujae107
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mechanistic statistical models are commonly used to study the flow of biological processes. For example, in landscape genetics, the aim is to infer spatial mechanisms that govern gene flow in populations. Existing statistical approaches in landscape genetics do not account for temporal dependence in the data and may be computationally prohibitive. We infer mechanisms with a Bayesian hierarchical dyadic model that scales well with large data sets and that accounts for spatial and temporal dependence. We construct a fully connected network comprising spatio-temporal data for the dyadic model and use normalized composite likelihoods to account for the dependence structure in space and time. We develop a dyadic model to account for physical mechanisms commonly found in physical-statistical models and apply our methods to ancient human DNA data to infer the mechanisms that affected human movement in Bronze Age Europe.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Asymptotic models and inference for extremes of spatio-temporal data
    Turkman, Kamil Feridun
    Turkman, M. A. Amaral
    Pereira, J. M.
    EXTREMES, 2010, 13 (04) : 375 - 397
  • [12] Adaptive spatio-temporal models for satellite ecological data
    Grillenzoni, C
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2004, 9 (02) : 158 - 180
  • [13] Factor copula models for data with spatio-temporal dependence
    Krupskii, Pavel
    Genton, Marc G.
    SPATIAL STATISTICS, 2017, 22 : 180 - 195
  • [14] Inference for the Analysis of Ordinal Data with Spatio-Temporal Models
    Peraza-Garay, F.
    Marquez-Urbina, J. U.
    Gonzalez-Farias, G.
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2020, 16 (02): : 192 - 225
  • [15] Spatio-temporal Topic Models for Check-in Data
    Liu, Yu
    Ester, Martin
    Hu, Bo
    Cheung, David W.
    2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2015, : 889 - 894
  • [16] Adapting data models for the design of spatio-temporal databases
    Bedard, Y
    Caron, C
    Maamar, Z
    Moulin, B
    Valliere, D
    COMPUTERS ENVIRONMENT AND URBAN SYSTEMS, 1996, 20 (01) : 19 - 41
  • [17] Asymptotic models and inference for extremes of spatio-temporal data
    Kamil Feridun Turkman
    M. A. Amaral Turkman
    J. M. Pereira
    Extremes, 2010, 13 : 375 - 397
  • [18] A Spatio-Temporal Linked Data Representation for Modeling Spatio-Temporal Dialect Data
    Scholz, Johannes
    Hrastnig, Emanual
    Wandl-Vogt, Eveline
    PROCEEDINGS OF WORKSHOPS AND POSTERS AT THE 13TH INTERNATIONAL CONFERENCE ON SPATIAL INFORMATION THEORY (COSIT 2017), 2018, : 275 - 282
  • [19] Generalized spatio-temporal models
    Cepeda Cuervo, Edilberto
    SORT-STATISTICS AND OPERATIONS RESEARCH TRANSACTIONS, 2011, 35 (02) : 165 - 178
  • [20] Generalized spatio-temporal models
    Cuervo, Edilberto Cepeda
    SORT, 2011, 35 (02): : 165 - 178