s±-wave superconductivity in pressurized La4Ni3O10

被引:2
|
作者
Zhang, Ming [1 ]
Sun, Hongyi [2 ,3 ]
Liu, Yu-Bo [4 ]
Liu, Qihang [5 ,6 ,7 ]
Chen, Wei-Qiang [5 ,6 ,7 ]
Yang, Fan [4 ]
机构
[1] Zhejiang Sci Tech Univ, Dept Phys, Zhejiang Key Lab Quantum State Control & Opt Field, Hangzhou 310018, Zhejiang, Peoples R China
[2] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[3] Int Quantum Acad, Shenzhen 518048, Peoples R China
[4] Beijing Inst Technol, Sch Phys, Beijing 100081, Peoples R China
[5] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
[6] Southern Univ Sci & Technol, Guangdong Basic Res Ctr Excellence Quantum Sci, Shenzhen 518055, Peoples R China
[7] Southern Univ Sci & Technol, Shenzhen Key Lab Adv Quantum Funct Mat & Devices, Shenzhen 518055, Peoples R China
基金
国家重点研发计划;
关键词
PHASE; ORDER;
D O I
10.1103/PhysRevB.110.L180501
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recently, evidence of superconductivity (SC) has been reported in pressurized La4Ni3O10. Here we study its possible pairing mechanism and pairing symmetry. Through fitting the density-functional-theory band structure, we provide a six-orbital tight-binding model. In comparison with the band structure of La3Ni2O7, the additional nonbonding dz2 band is important to the pairing mechanism here. When the multiorbital Hubbard interactions are included, our random-phase-approximation based study yields an s +/--wave SC. The dominant Fermi-surface nesting with vector Q1 approximate to (n, n) is between the gamma pocket contributed by the bonding dz2 band top and the alpha 1 pocket contributed by the nonbonding dz2 band bottom, leading to the strongest pairing amplitude and opposite gap signs within the two regimes. The dominant real-space pairing is the interlayer dz2-orbital pairing. This s +/--wave pairing pattern is insensitive to the band details. Upon electron doping, the Tc would increase promptly before the system enters the N & eacute;el-ordered spin-density-wave phase.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Fermiology and electron dynamics of trilayer nickelate La4Ni3O10 (vol 8, 704, 2017)
    Li, Haoxiang
    Zhou, Xiaoqing
    Nummy, Thomas
    Zhang, Junjie
    Pardo, Victor
    Pickett, Warren E.
    Mitchell, J. F.
    Dessau, D. S.
    NATURE COMMUNICATIONS, 2018, 9 : 1952
  • [33] Interlayer pairing-induced partially gapped Fermi surface in trilayer La4Ni3O10 superconductors
    Huang, Junkang
    Zhou, Tao
    PHYSICAL REVIEW B, 2024, 110 (06)
  • [34] Type-II t-J model in charge transfer regime in bilayer La3Ni2O7 and trilayer La4Ni3O10
    Oh, Hanbit
    Zhou, Boran
    Zhang, Ya-Hui
    PHYSICAL REVIEW B, 2025, 111 (02)
  • [35] Magnetic susceptibility, heat capacity, and pressure dependence of the electrical resistivity of La3Ni2O7 and La4Ni3O10 -: art. no. 245120
    Wu, GQ
    Neumeier, JJ
    Hundley, MF
    PHYSICAL REVIEW B, 2001, 63 (24)
  • [36] Analysis of La4Ni3O10±δ-BaCe0.9Y0.1O3-δ Composite Cathodes for Proton Ceramic Fuel Cells
    Loureiro, Francisco J. A.
    Ramasamy, Devaraj
    Graca, Vanessa C. D.
    Holz, Laura I. V.
    Mikhalev, Sergey M.
    Fagg, Duncan P.
    APPLIED SCIENCES-BASEL, 2021, 11 (08):
  • [37] Synthesis of La4Ni3O10 via Ethylenediaminetetraacetic Acid Sol-Gel Auto-Combustion Route
    Liu Ting
    Huang Chuyun
    Xu Yebin
    Li Yang
    RARE METAL MATERIALS AND ENGINEERING, 2012, 41 : 120 - 123
  • [38] Pressure-Induced Superconductivity in La4Ni3O10+δ (δ=0.04 and-0.01)
    Nagata, Hibiki
    Sakurai, Hiroya
    Ueki, Yuta
    Yamane, Kazuki
    Matsumoto, Ryo
    Terashima, Kensei
    Hirose, Keisuke
    Ohta, Hiroto
    Kato, Masaki
    Takano, Yoshihiko
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2024, 93 (09)
  • [39] Effect of Electron Doping on the Crystal Structure and Physical Properties of an n=3 Ruddlesden-Popper Compound La4Ni3O10
    Periyasamy, Manimuthu
    Patra, Lokanath
    Fjellvag, Oystein S.
    Ravindran, Ponniah
    Sorby, Magnus H.
    Kumar, Susmit
    Sjastad, Anja O.
    Fjellvag, Helmer
    ACS APPLIED ELECTRONIC MATERIALS, 2021, 3 (06) : 2671 - 2684
  • [40] Catalytic production of carbon nanotubes by decomposition of CH4 over the pre-reduced catalysts LaNiO3, La4Ni3O10, La3Ni2O7 and La2NiO4
    Li, H
    Liang, Q
    Gao, LZ
    Tang, SH
    Cheng, ZY
    Zhang, BL
    Yu, ZL
    Ng, CF
    Au, CT
    CATALYSIS LETTERS, 2001, 74 (3-4) : 185 - 188