Tailoring the Li+ Intercalation Energy of Carbon Nanocage Anodes Via Atomic Al-Doping for High-Performance Lithium-Ion Batteries

被引:0
|
作者
Yu, Xingmiao [1 ,2 ]
Xiang, Jianfei [1 ,2 ]
Shi, Qitao [3 ]
Li, Luwen [1 ,2 ]
Wang, Jiaqi [1 ,2 ]
Liu, Xiangqi [1 ,2 ]
Zhang, Cheng [1 ,2 ]
Wang, Zhipeng [1 ,2 ]
Zhang, Junjin [1 ,2 ]
Hu, Huimin [1 ,2 ]
Bachmatiuk, Alicja [4 ]
Trzebicka, Barbara [5 ]
Chen, Jin [1 ,2 ]
Guo, Tianxiao [1 ,2 ]
Shen, Yanbin [3 ]
Choi, Jinho [1 ,2 ,4 ,6 ]
Huang, Cheng [1 ,2 ,6 ,7 ]
Rummeli, Mark H. [1 ,2 ,5 ,6 ,8 ,9 ,10 ]
机构
[1] Soochow Univ, Soochow Inst Energy & Mat Innovat, Coll Energy, Key Lab Adv Carbon Mat & Wearable Energy Technol J, Suzhou 215006, Peoples R China
[2] Soochow Univ, Key Mat Petr & Chem Ind, Suzhou 215006, Peoples R China
[3] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion SINANO, CAS Ctr Excellence Nanosci, i Lab, Suzhou 215123, Peoples R China
[4] IFW Dresden, Inst Complex Mat, 20 Helmholtz Str, D-01069 Dresden, Germany
[5] PORT Polish Ctr Technol Dev, LUKASIEWICZ Res Network, Stablowicka 147, PL-54066 Wroclaw, Poland
[6] Soochow Univ, Key Lab Core Technol High Specif Energy Battery, Suzhou 215006, Peoples R China
[7] Suzhou City Univ, Coll Opt & Elect Informat, Phys & Energy Dept, Suzhou 215104, Peoples R China
[8] Soochow Univ, Jiangsu Key Lab Adv Negat Carbon Technol, Suzhou 215123, Peoples R China
[9] Polish Acad Sci, Ctr Polymer & Carbon Mat, M Curie Sklodowskiej 34, PL-41819 Zabrze, Poland
[10] VSB Tech Univ Ostrava, Inst Environm Technol IET, Ctr Energy & Environm Technol CEET, 17 Listopadu 15, Ostrava 70833, Czech Republic
基金
中国国家自然科学基金;
关键词
anode; atomic Al-doping; carbon nanocage; fast-charging; FLUOROETHYLENE CARBONATE; LOW-COST; GRAPHENE; BORON; NITROGEN; NANOSHEETS; CAPACITY; OXIDE; PHOSPHORUS; CHALLENGES;
D O I
10.1002/smll.202406309
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphitic carbon materials are widely used in lithium-ion batteries (LIBs) due to their stability and high conductivity. However, graphite anodes have low specific capacity and degrade over time, limiting their application. To meet advanced energy storage needs, high-performance graphitic carbon materials are required. Enhancing the electrochemical performance of carbon materials can be achieved through boron and nitrogen doping and incorporating 3D structures such as carbon nanocages (CNCs). In this study, aluminum (Al) is introduced into CNC lattices via chemical vapor deposition (CVD). The hollow structure of CNCs enables fast electrolyte penetration. Density functional theory (DFT) calculations show that Al doping lowers the intercalation energy of Li+. The Al-boron (B)-nitrogen (N-doped CNC (AlBN-CNC) anode demonstrates an ultrahigh rate capacity (approximate to 300 mAh g(-1) at 10 A g(-1)) and a prolonged fast-charging lifespan (862.82 mAh g(-1) at 5 A g(-1) after 1000 cycles), surpassing the N-doped or BN-doped CNCs. Al doping improves charging kinetics and structural stability. Surprisingly, AlBN-CNCs exhibit increased capacity upon cycling due to enlarged graphitic interlayer spacing. Characterization of graphitic nanostructures confirms that Al doping effectively tailors and enhances their electrochemical properties, providing a new strategy for high-capacity, fast-charging graphitic carbon anode materials for next-generation LIBs.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Hierarchical Phosphide-Based Hybrid Anodes for High-Performance Lithium-Ion Batteries
    Xiao, Shanshan
    Chen, Yong
    Zhou, Xianggang
    Sun, Hechen
    Wan, Wubin
    Li, Yingqi
    Yao, Ruiqi
    Bi, Fei
    Zhao, Li
    Wang, Liyan
    Lang, Xing-You
    Jiang, Qing
    NANO LETTERS, 2025, 25 (09) : 3532 - 3540
  • [42] Interpenetrated Gel Polymer Binder for High-Performance Silicon Anodes in Lithium-ion Batteries
    Song, Jiangxuan
    Zhou, Mingjiong
    Yi, Ran
    Xu, Terrence
    Gordin, Mikhail L.
    Tang, Duihai
    Yu, Zhaoxin
    Regula, Michael
    Wang, Donghai
    ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (37) : 5904 - 5910
  • [43] Controlled synthesis of high-performance β-FeOOH anodes for lithium-ion batteries and their size effects
    Yu, Linghui
    Wei, Chao
    Yan, Qingyu
    Xu, Zhichuan J.
    NANO ENERGY, 2015, 13 : 397 - 404
  • [44] Mesoporous Spherical Li4Ti5O12 as High-Performance Anodes for Lithium-Ion Batteries
    Du, Guojun
    Liu, Zhaolin
    Tay, Siok Wei
    Liu, Xiaogang
    Yu, Aishui
    CHEMISTRY-AN ASIAN JOURNAL, 2014, 9 (09) : 2514 - 2518
  • [45] The electrochemical effect of Al-doping on Li4Ti5O12 as anode material for lithium-ion batteries
    Ncube, Ntombizodwa M.
    Mhlongo, Welcome T.
    McCrindle, Robert I.
    Zheng, Haitao
    MATERIALS TODAY-PROCEEDINGS, 2018, 5 (04) : 10592 - 10601
  • [46] Porous carbon-coated ball-milled silicon as high-performance anodes for lithium-ion batteries
    Joseph Nzabahimana
    Peng Chang
    Xianluo Hu
    Journal of Materials Science, 2019, 54 : 4798 - 4810
  • [47] Porous carbon-coated ball-milled silicon as high-performance anodes for lithium-ion batteries
    Nzabahimana, Joseph
    Chang, Peng
    Hu, Xianluo
    JOURNAL OF MATERIALS SCIENCE, 2019, 54 (06) : 4798 - 4810
  • [48] Building Robust Architectures of Carbon and Metal Oxide Nanocrystals toward High-Performance Anodes for Lithium-Ion Batteries
    Jia, Xilai
    Chen, Zheng
    Cui, Xia
    Peng, Yiting
    Wang, Xiaolei
    Wang, Ge
    Wei, Fei
    Lu, Yunfeng
    ACS NANO, 2012, 6 (11) : 9911 - 9919
  • [49] Emerging Atomic Layer Deposition for the Development of High-Performance Lithium-Ion Batteries
    Sina Karimzadeh
    Babak Safaei
    Chris Yuan
    Tien-Chien Jen
    Electrochemical Energy Reviews, 2023, 6
  • [50] Silicon Nanoparticles Encapsulated within Multifunctional Double Carbon Matrices as Anodes for High-Performance Lithium-Ion Batteries
    Hou, Peiyuan
    Yao, Xiang
    Tian, Hualing
    Cai, Yanjun
    Liu, Yuxiang
    Su, Zhi
    ENERGY TECHNOLOGY, 2025,