Tailoring the Li+ Intercalation Energy of Carbon Nanocage Anodes Via Atomic Al-Doping for High-Performance Lithium-Ion Batteries

被引:0
|
作者
Yu, Xingmiao [1 ,2 ]
Xiang, Jianfei [1 ,2 ]
Shi, Qitao [3 ]
Li, Luwen [1 ,2 ]
Wang, Jiaqi [1 ,2 ]
Liu, Xiangqi [1 ,2 ]
Zhang, Cheng [1 ,2 ]
Wang, Zhipeng [1 ,2 ]
Zhang, Junjin [1 ,2 ]
Hu, Huimin [1 ,2 ]
Bachmatiuk, Alicja [4 ]
Trzebicka, Barbara [5 ]
Chen, Jin [1 ,2 ]
Guo, Tianxiao [1 ,2 ]
Shen, Yanbin [3 ]
Choi, Jinho [1 ,2 ,4 ,6 ]
Huang, Cheng [1 ,2 ,6 ,7 ]
Rummeli, Mark H. [1 ,2 ,5 ,6 ,8 ,9 ,10 ]
机构
[1] Soochow Univ, Soochow Inst Energy & Mat Innovat, Coll Energy, Key Lab Adv Carbon Mat & Wearable Energy Technol J, Suzhou 215006, Peoples R China
[2] Soochow Univ, Key Mat Petr & Chem Ind, Suzhou 215006, Peoples R China
[3] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion SINANO, CAS Ctr Excellence Nanosci, i Lab, Suzhou 215123, Peoples R China
[4] IFW Dresden, Inst Complex Mat, 20 Helmholtz Str, D-01069 Dresden, Germany
[5] PORT Polish Ctr Technol Dev, LUKASIEWICZ Res Network, Stablowicka 147, PL-54066 Wroclaw, Poland
[6] Soochow Univ, Key Lab Core Technol High Specif Energy Battery, Suzhou 215006, Peoples R China
[7] Suzhou City Univ, Coll Opt & Elect Informat, Phys & Energy Dept, Suzhou 215104, Peoples R China
[8] Soochow Univ, Jiangsu Key Lab Adv Negat Carbon Technol, Suzhou 215123, Peoples R China
[9] Polish Acad Sci, Ctr Polymer & Carbon Mat, M Curie Sklodowskiej 34, PL-41819 Zabrze, Poland
[10] VSB Tech Univ Ostrava, Inst Environm Technol IET, Ctr Energy & Environm Technol CEET, 17 Listopadu 15, Ostrava 70833, Czech Republic
基金
中国国家自然科学基金;
关键词
anode; atomic Al-doping; carbon nanocage; fast-charging; FLUOROETHYLENE CARBONATE; LOW-COST; GRAPHENE; BORON; NITROGEN; NANOSHEETS; CAPACITY; OXIDE; PHOSPHORUS; CHALLENGES;
D O I
10.1002/smll.202406309
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphitic carbon materials are widely used in lithium-ion batteries (LIBs) due to their stability and high conductivity. However, graphite anodes have low specific capacity and degrade over time, limiting their application. To meet advanced energy storage needs, high-performance graphitic carbon materials are required. Enhancing the electrochemical performance of carbon materials can be achieved through boron and nitrogen doping and incorporating 3D structures such as carbon nanocages (CNCs). In this study, aluminum (Al) is introduced into CNC lattices via chemical vapor deposition (CVD). The hollow structure of CNCs enables fast electrolyte penetration. Density functional theory (DFT) calculations show that Al doping lowers the intercalation energy of Li+. The Al-boron (B)-nitrogen (N-doped CNC (AlBN-CNC) anode demonstrates an ultrahigh rate capacity (approximate to 300 mAh g(-1) at 10 A g(-1)) and a prolonged fast-charging lifespan (862.82 mAh g(-1) at 5 A g(-1) after 1000 cycles), surpassing the N-doped or BN-doped CNCs. Al doping improves charging kinetics and structural stability. Surprisingly, AlBN-CNCs exhibit increased capacity upon cycling due to enlarged graphitic interlayer spacing. Characterization of graphitic nanostructures confirms that Al doping effectively tailors and enhances their electrochemical properties, providing a new strategy for high-capacity, fast-charging graphitic carbon anode materials for next-generation LIBs.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Intercalation of CoO in S-Doped Graphite as High-Performance Anodes for Lithium-Ion Batteries
    Ma, Xinlong
    Song, Xinyu
    Tang, Yushu
    Qi, Chuanlei
    Ning, Guoqing
    Gao, Jinsen
    Li, Yongfeng
    ENERGY TECHNOLOGY, 2017, 5 (12) : 2244 - 2252
  • [2] Tailoring the Microstructure of Porous Carbon Spheres as High Rate Performance Anodes for Lithium-Ion Batteries
    Liang, Zikun
    Li, Ang
    Deng, Kaiming
    Ouyang, Bo
    Kan, Erjun
    MATERIALS, 2023, 16 (13)
  • [3] Nanostructured Silicon Anodes for High-Performance Lithium-Ion Batteries
    Rahman, Md. Arafat
    Song, Guangsheng
    Bhatt, Anand I.
    Wong, Yat Choy
    Wen, Cuie
    ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (05) : 647 - 678
  • [4] Functionalized MXene anodes for high-performance lithium-ion batteries
    Kim, Jiwoong (jwk@ssu.ac.kr), 1600, Elsevier Ltd (1010):
  • [5] Functionalized MXene anodes for high-performance lithium-ion batteries
    Kim, Hyokyeong
    Choi, Jiwoo
    Bae, Inseong
    Son, Hayoung
    Choi, Junyoung
    Lee, Jinyong
    Kim, Jiwoong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1010
  • [6] High energy density lithium-ion batteries with carbon nanotube anodes
    Brian J. Landi
    Cory D. Cress
    Ryne P. Raffaelle
    Journal of Materials Research, 2010, 25 : 1636 - 1644
  • [7] High energy density lithium-ion batteries with carbon nanotube anodes
    Landi, Brian J.
    Cress, Cory D.
    Raffaelle, Ryne P.
    JOURNAL OF MATERIALS RESEARCH, 2010, 25 (08) : 1636 - 1644
  • [8] Development of carbon materials for high performance anodes in lithium-ion batteries
    Takami, N
    Satoh, A
    Ohsaki, T
    Kanda, M
    ELECTROCHEMISTRY, 2001, 69 (07) : 555 - 555
  • [9] A β-FeOOH/MXene sandwich for high-performance anodes in lithium-ion batteries
    He, Lu
    Tan, Chuan
    Sheng, Chuanchao
    Chen, Yuanzhao
    Yu, Fengjiao
    Chen, Yuhui
    DALTON TRANSACTIONS, 2020, 49 (27) : 9268 - 9273
  • [10] Solvated Graphene Frameworks as High-Performance Anodes for Lithium-Ion Batteries
    Xu, Yuxi
    Lin, Zhaoyang
    Zhong, Xing
    Papandrea, Ben
    Huang, Yu
    Duan, Xiangfeng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (18) : 5345 - 5350