High-entropy alloy nanomaterials for electrocatalysis

被引:0
|
作者
Cui, Mingjin [1 ,2 ]
Zhang, Ying [1 ]
Xu, Bo [1 ]
Xu, Fei [1 ]
Chen, Jianwei [1 ]
Zhang, Shaoyin [1 ]
Chen, Chunhong [1 ]
Luo, Zhimin [1 ]
机构
[1] State Key Laboratory for Organic Electronics and Information Displays (SKLOEID), Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), College of Electronic and Optical Engineering, College of Flexi
[2] Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai,200093, China
基金
中国国家自然科学基金;
关键词
Cobalt alloys - Electrocatalysis - Electrolysis - Electrolytic reduction - Hydrogen evolution reaction - Nanoclay - Nanostructured materials - Oxygen cutting - Oxygen evolution reaction - Oxygen reduction reaction;
D O I
10.1039/d4cc04075a
中图分类号
学科分类号
摘要
High-entropy alloys (HEAs) exhibit a remarkable capacity to modulate geometric and electronic structures for the construction of catalysts with unpredictable and exceptional performance, and have attracted substantial acclaim within the domain of materials science. In this comprehensive review, we present a thorough summary of the synthesis and multiple applications of HEAs in the realm of electrocatalysis. Our review encompasses the diverse synthesis methodologies of HEA nanomaterials and their pivotal roles in amplifying electrocatalytic performance in hydrogen evolution reactions (HERs), oxygen evolution reactions (OERs), oxygen reduction reactions (ORRs), alcohol oxidation reactions (AORs), and CO2 reduction reactions (CO2RRs), and more. Furthermore, we address the intricate challenges and promising avenues that lie ahead in this research area. Reviewing recent breakthroughs, emerging paradigms, and prospects on the horizon, it becomes increasingly evident that HEAs harbor immense potential to reshape the landscape of energy conversion and storage, and emerge as paramount contenders for the development of cutting-edge electrocatalytic materials that hold the key to a sustainable energy future. © 2024 The Royal Society of Chemistry.
引用
收藏
页码:12615 / 12632
相关论文
共 50 条
  • [41] High-Entropy Alloy Coatings: State and Prospects
    Gromov V.E.
    Konovalov S.V.
    Peregudov O.A.
    Efimov M.O.
    Shlyarova Y.A.
    Steel in Translation, 2022, 52 (10) : 899 - 906
  • [42] Recrystallization Behavior of CoCrCuFeNi High-Entropy Alloy
    Nokeun Park
    Ikuto Watanabe
    Daisuke Terada
    Yoshihiko Yokoyama
    Peter K. Liaw
    Nobuhiro Tsuji
    Metallurgical and Materials Transactions A, 2015, 46 : 1481 - 1487
  • [43] Origin of high strength in the CoCrFeNiPd high-entropy alloy
    Yin, Binglun
    Curtin, W. A.
    MATERIALS RESEARCH LETTERS, 2020, 8 (06): : 209 - 215
  • [44] Microstructure and property of AlTiCrFeNiCu high-entropy alloy
    Pi, Jin-Hong
    Pan, Ye
    Zhang, Lu
    Zhang, Hui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (18) : 5641 - 5645
  • [45] Senary refractory high-entropy alloy CrxMoNbTaVW
    Zhang, B.
    Gao, M. C.
    Zhang, Y.
    Guo, S. M.
    CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2015, 51 : 193 - 201
  • [46] Equation of State of an AlCoCrCuFeNi High-Entropy Alloy
    Gong Li
    Daihong Xiao
    Pengfei Yu
    Lijun Zhang
    Peter K. Liaw
    Yanchun Li
    Riping Liu
    JOM, 2015, 67 : 2310 - 2313
  • [47] Sublattice formation in CoCrFeNi high-entropy alloy
    Meshkov, E. A.
    Novoselov, I. I.
    Shapeev, A., V
    Yanilkin, A., V
    INTERMETALLICS, 2019, 112
  • [48] Structural anomaly in the high-entropy alloy ZrNbTiTaHf
    Heidelmann, Markus
    Feuerbacher, Michael
    Ma, Duancheng
    Grabowski, Blazej
    INTERMETALLICS, 2016, 68 : 11 - 15
  • [49] Magnetic Properties of High-Entropy Alloy FeCoNiTi
    Kitagawa, Jiro
    Shintaku, Daiki
    ACS OMEGA, 2024, 9 (35): : 37197 - 37204
  • [50] Fast Slip Velocity in a High-Entropy Alloy
    Q. Rizzardi
    G. Sparks
    R. Maaß
    JOM, 2018, 70 : 1088 - 1093