Discovery of Alloy Catalysts for Ammonia Decomposition by Machine Learning-Based Prediction of Adsorption Energies

被引:0
|
作者
Yeo, Byung Chul [1 ]
Jeong, So Yun [1 ]
Kim, Jun Su [1 ]
Kim, Donghun [2 ]
机构
[1] Pukyong Natl Univ, Dept Energy Resources Engn, Pusan 48513, South Korea
[2] Korea Inst Sci & Technol, Computat Sci Res Ctr, Seoul 02792, South Korea
来源
关键词
ammonia decomposition; catalyst; machine learning; adsorption energy; screening; HYDROGEN;
D O I
10.3365/KJMM.2024.62.11.920
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ammonia decomposition has gained significant attention as an eco-friendly method for hydrogen production because it creates no carbon dioxide emissions. While Ru catalysts are known for their high activity in ammonia decomposition, their high cost makes them uneconomical for commercial use. Therefore, it is essential to explore novel alloy catalysts composed of inexpensive elements with high catalytic performance. Nitrogen adsorption energies serve as key descriptors indicating the catalytic performance for ammonia decomposition, and first-principle calculations can compute these energies. However, the screening of numerous alloy catalyst candidates through extensive first-principle calculations and experimental validations remains time-consuming due to the vast number of potential candidates. To address this, artificial intelligence and machine learning models are being developed to quickly predict catalyst performance, efficiently searching for promising catalyst candidates. In this study, we developed a machine-learning-based method to rapidly predict nitrogen adsorption energies using a graph-based artificial neural network, thereby efficiently searching for novel catalysts for ammonia decomposition. Our training dataset included the nitrogen adsorption energies of 30 pure transition metal catalyst candidates, as well as binary alloy catalyst candidates, including core-shell and intermetallic compounds. As a result, we successfully identified 12 catalyst candidates composed of inexpensive elements that are likely to exhibit catalytic performance comparable to Ru catalysts.
引用
收藏
页码:920 / 927
页数:8
相关论文
共 50 条
  • [31] Machine learning-based prediction of compound profiling matrices
    Perez, Raquel Rodriguez
    Bajorath, Jurgen
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [32] Machine Learning-Based Academic Result Prediction System
    Bhushan, Megha
    Verma, Utkarsh
    Garg, Chetna
    Negi, Arun
    INTERNATIONAL JOURNAL OF SOFTWARE INNOVATION, 2024, 12 (01)
  • [33] Machine Learning-Based Link Prediction for Hotel Network
    Sevim, Yiğit
    Orman, Günce Keziban
    Yöndem, Meltem Turhan
    IAENG International Journal of Computer Science, 2022, 49 (04)
  • [34] Machine Learning-based Pin Accessibility Prediction and Application
    Fang, Shao-Yun
    2021 INTERNATIONAL SYMPOSIUM ON VLSI DESIGN, AUTOMATION AND TEST (VLSI-DAT), 2021,
  • [35] Machine Learning-based Corporate Socia Responsibility Prediction
    Teoh, T-T
    Heng, Q. K.
    Chia, J. J.
    Shie, J. M.
    Liaw, S. W.
    Yang, M.
    Nguwi, Y-Y
    PROCEEDINGS OF THE IEEE 2019 9TH INTERNATIONAL CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS (CIS) ROBOTICS, AUTOMATION AND MECHATRONICS (RAM) (CIS & RAM 2019), 2019, : 501 - 505
  • [36] Machine learning-based prediction of FeNi nanoparticle magnetization
    Williamson, Federico
    Naciff, Nadhir
    Catania, Carlos
    dos Santos, Gonzalo
    Amigo, Nicolas
    Bringa, Eduardo M.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 5263 - 5276
  • [37] Machine Learning-Based Prediction of the Excitation Wavelength of Phosphors
    Sahu, Sunil K.
    Shrivastav, Anil
    Swamy, N. K.
    Dubey, Vikas
    Halwar, D. K.
    Kumar, M. Tanooj
    Rao, M. C.
    JOURNAL OF APPLIED SPECTROSCOPY, 2024, 91 (03) : 669 - 677
  • [38] Interpretability of machine learning-based prediction models in healthcare
    Stiglic, Gregor
    Kocbek, Primoz
    Fijacko, Nino
    Zitnik, Marinka
    Verbert, Katrien
    Cilar, Leona
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 10 (05)
  • [39] Machine Learning-Based Prediction of Antiferromagnetic Skyrmion Formation
    Saini, Shipra
    Shukla, Alok Kumar
    Nehete, Hemkant
    Bindal, Namita
    Kaushik, Brajesh Kumar
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2024, 71 (04) : 2774 - 2780
  • [40] Machine learning-based prediction models for postpartum hemorrhage
    Venkatesh, Kartik K.
    Strauss, Robert
    Grotegut, Chad
    Heine, Phillips
    Stamilio, David M.
    Menard, Kathryn
    Jelovsek, Eric
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2020, 222 (01) : S175 - S176