Biophysical model for joint analysis of chromatin and RNA sequencing data

被引:0
|
作者
Felce, Catherine [1 ]
Gorin, Gennady [2 ]
Pachter, Lior [3 ]
机构
[1] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA
[2] Fauna Bio, Emeryville, CA 94608 USA
[3] CALTECH, Div Biol & Biol Engn, Pasadena, CA 91125 USA
关键词
CHIP-CHIP DATA; ACCESSIBILITY;
D O I
10.1103/PhysRevE.110.064405
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The assay for transposase-accessible chromatin using sequencing (ATAC-seq) can be used to identify open chromatin regions, providing complementary information to RNA-seq which measures gene expression by sequencing. Single-cell multiome methods offer the possibility of measuring both modalities simultaneously in cells, raising the question of how to analyze them jointly, and also the extent to which the information they provide is better than unregistered data, where single-cell ATAC-seq and single-cell RNA-seq are performed on the same sample, but on different cells. We propose and motivate a biophysical model for chromatin dynamics and subsequent transcription that can be used to parametrize multiome data, and use it to assess the benefits of multiome data over unregistered single-cell RNA-seq and single-cell ATAC-seq. We also show that our model provides a biophysically grounded approach to the integration of chromatin accessibility data with other modalitie, and apply the model to single-cell ATAC-seq data.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Systematic evaluation of parameters in RNA bisulfite sequencing data generation and analysis
    Johnson, Zachary
    Xu, Xiguang
    Pacholec, Christina
    Xie, Hehuang
    NAR GENOMICS AND BIOINFORMATICS, 2022, 4 (02)
  • [42] Analysis of single-cell RNA sequencing data based on autoencoders
    Tangherloni, Andrea
    Ricciuti, Federico
    Besozzi, Daniela
    Lio, Pietro
    Cvejic, Ana
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [43] Novel approaches for bioinformatic analysis of salivary RNA sequencing data for development
    Kaczor-Urbanowicz, Karolina Elzbieta
    Kim, Yong
    Li, Feng
    Galeev, Timur
    Kitchen, Rob R.
    Gerstein, Mark
    Koyano, Kikuye
    Jeong, Sung-Hee
    Wang, Xiaoyan
    Elashoff, David
    Kang, So Young
    Kim, Su Mi
    Kim, Kyoung
    Kim, Sung
    Chia, David
    Xiao, Xinshu
    Rozowsky, Joel
    Wong, David T. W.
    BIOINFORMATICS, 2018, 34 (01) : 1 - 8
  • [44] Bayesian analysis of RNA sequencing data by estimating multiple shrinkage priors
    Van De Wiel, Mark A.
    Leday, Gwenael G. R.
    Pardo, Luba
    Rue, Havard
    Van Der Vaart, Aad W.
    Van Wieringen, Wessel N.
    BIOSTATISTICS, 2013, 14 (01) : 113 - 128
  • [45] Combined statistics for differential expression analysis of RNA-sequencing data
    Fanidis, Dionysios
    Moulos, Panagiotis
    2019 IEEE 19TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE), 2019, : 170 - 173
  • [46] REPAC: analysis of alternative polyadenylation from RNA-sequencing data
    Imada, Eddie L.
    Wilks, Christopher
    Langmead, Ben
    Marchionni, Luigi
    GENOME BIOLOGY, 2023, 24 (01)
  • [47] An Introduction to the Analysis of Single-Cell RNA-Sequencing Data
    AlJanahi, Aisha A.
    Danielsen, Mark
    Dunbar, Cynthia E.
    MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT, 2018, 10 : 189 - 196
  • [48] Biophysical analysis of specific genomic loci assembled as chromatin In vivo
    Georgel, PT
    Hansen, JC
    CHROMATIN AND CHROMATIN REMODELING ENZYMES, PT B, 2004, 376 : 17 - 29
  • [49] Analysis of Long Noncoding RNA Chromatin Interactions by Chromatin Isolation by RNA Purification (ChIRP)
    Asbrock, Nick
    FASEB JOURNAL, 2016, 30
  • [50] MOABS: model based analysis of bisulfite sequencing data
    Deqiang Sun
    Yuanxin Xi
    Benjamin Rodriguez
    Hyun Jung Park
    Pan Tong
    Mira Meong
    Margaret A Goodell
    Wei Li
    Genome Biology, 15