Biophysical model for joint analysis of chromatin and RNA sequencing data

被引:0
|
作者
Felce, Catherine [1 ]
Gorin, Gennady [2 ]
Pachter, Lior [3 ]
机构
[1] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA
[2] Fauna Bio, Emeryville, CA 94608 USA
[3] CALTECH, Div Biol & Biol Engn, Pasadena, CA 91125 USA
关键词
CHIP-CHIP DATA; ACCESSIBILITY;
D O I
10.1103/PhysRevE.110.064405
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The assay for transposase-accessible chromatin using sequencing (ATAC-seq) can be used to identify open chromatin regions, providing complementary information to RNA-seq which measures gene expression by sequencing. Single-cell multiome methods offer the possibility of measuring both modalities simultaneously in cells, raising the question of how to analyze them jointly, and also the extent to which the information they provide is better than unregistered data, where single-cell ATAC-seq and single-cell RNA-seq are performed on the same sample, but on different cells. We propose and motivate a biophysical model for chromatin dynamics and subsequent transcription that can be used to parametrize multiome data, and use it to assess the benefits of multiome data over unregistered single-cell RNA-seq and single-cell ATAC-seq. We also show that our model provides a biophysically grounded approach to the integration of chromatin accessibility data with other modalitie, and apply the model to single-cell ATAC-seq data.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] A Joint Bayesian Model for Integrating Microarray and RNA Sequencing Transcriptomic Data
    Ma, Tianzhou
    Liang, Faming
    Oesterreich, Steffi
    Tseng, George C.
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2017, 24 (07) : 647 - 662
  • [2] Defining pervasive transcription units using chromatin RNA-sequencing data
    Guo, Ziwei
    Liu, Xinhong
    Chen, Mo
    STAR PROTOCOLS, 2022, 3 (02):
  • [3] Biophysical modeling with variational autoencoders for bimodal, single-cell RNA sequencing data
    Carilli, Maria
    Gorin, Gennady
    Choi, Yongin
    Chari, Tara
    Pachter, Lior
    NATURE METHODS, 2024, 21 (08) : 1466 - 1469
  • [4] PRADA: pipeline for RNA sequencing data analysis
    Torres-Garcia, Wandaliz
    Zheng, Siyuan
    Sivachenko, Andrey
    Vegesna, Rahulsimham
    Wang, Qianghu
    Yao, Rong
    Berger, Michael F.
    Weinstein, John N.
    Getz, Gad
    Verhaak, Roel G. W.
    BIOINFORMATICS, 2014, 30 (15) : 2224 - 2226
  • [5] Statistical Design and Analysis of RNA Sequencing Data
    Auer, Paul L.
    Doerge, R. W.
    GENETICS, 2010, 185 (02) : 405 - U32
  • [6] Differential Analysis of RNA Methylation Sequencing Data
    Cui, Xiaodong
    Meng, Jia
    Rao, Manjeet K.
    Chen, Yidong
    Huang, Yufei
    2013 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2013, : 41 - 42
  • [7] Mapping RNA–chromatin interactions by sequencing with iMARGI
    Weixin Wu
    Zhangming Yan
    Tri C. Nguyen
    Zhen Bouman Chen
    Shu Chien
    Sheng Zhong
    Nature Protocols, 2019, 14 : 3243 - 3272
  • [8] Mapping RNA chromatin interactions by sequencing with iMARGI
    Wu, Weixin
    Yan, Zhangming
    Nguyen, Tri C.
    Chen, Zhen Bouman
    Chien, Shu
    Zhong, Sheng
    NATURE PROTOCOLS, 2019, 14 (11) : 3243 - 3272
  • [9] A Beginner's Guide to Analysis of RNA Sequencing Data
    Koch, Clarissa M.
    Chiu, Stephen F.
    Akbarpour, Mahzad
    Bharat, Ankit
    Ridge, Karen M.
    Bartom, Elizabeth T.
    Winter, Deborah R.
    AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 2018, 59 (02) : 145 - 157
  • [10] Joint gene network construction by single-cell RNA sequencing data
    Dong, Meichen
    He, Yiping
    Jiang, Yuchao
    Zou, Fei
    BIOMETRICS, 2023, 79 (02) : 915 - 925