Fault diagnosis of intelligent distribution system based on privacy-enhanced federated learning

被引:0
|
作者
Chen, Yifang [1 ]
Sun, Zhiqing [1 ]
Xuan, Yi [1 ]
Lou, Yinan [2 ]
Wang, Qifeng [2 ]
Guo, Fanghong [3 ]
机构
[1] State Grid Zhejiang Electric Power Co., Ltd., Hangzhou Power Supply Company, Hangzhou,310016, China
[2] State Grid Zhejiang Electric Power Co., Ltd., Hangzhou Xiaoshan District Power Supply Company, Hangzhou,310016, China
[3] College of Information Engineering, Zhejiang University of Technology, Hangzhou,310014, China
关键词
Data sharing - Differential privacies - Differential privacy - Distribution systems - Faults diagnosis - Federated learning - Performance - Power - Unbalanced data;
D O I
10.3772/j.issn.1006-6748.2024.04.010
中图分类号
学科分类号
摘要
In practical applications, different power companies are unwilling to share personal transformer data with each other due to data privacy. Faced with such a data isolation scenario, the centralized learning method is difficult to be used to solve the problem of transformer fault diagnosis. In recent years, the emergence of federated learning (FL) has provided a secure and distributed learning framework. However, the unbalanced data from multiple participants may reduce the overall performance of FL, while an untrusted central server will threaten the data privacy and security of clients. Thus, a fault diagnosis of intelligent distribution system method based on privacy-enhanced FL is proposed. Firstly, a globally shared dataset is established to effectively alleviate the impact of unbalanced data on the performance of the FedAvg algorithm. Then, Gaussian random noise is introduced during the parameter uploading process to further reduce the risk of data privacy leakage. Finally, the effectiveness and superiority of the proposed method are verified through extensive experiments. © 2024 Institute of Scientific and Technical Information of China. All rights reserved.
引用
收藏
页码:424 / 432
相关论文
共 50 条
  • [21] PODE: privacy-enhanced distributed federated learning approach for origindestination estimation
    Abbas, Sidra
    Sampedro, Gabriel Avelino
    Almadhor, Ahmad
    Abisado, Mideth
    Marzougui, Mehrez
    Kim, Tai-hoon
    Alasiry, Areej
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [22] An Intelligent Diagnosis Method for Machine Fault Based on Federated Learning
    Li, Zhinong
    Li, Zedong
    Li, Yunlong
    Tao, Junyong
    Mao, Qinghua
    Zhang, Xuhui
    APPLIED SCIENCES-BASEL, 2021, 11 (24):
  • [23] Federated learning for intelligent fault diagnosis based on similarity collaboration
    Zhang, Yonghong
    Xue, Xingan
    Zhao, Xiaoping
    Wang, Lihua
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (04)
  • [24] RR-LADP: A Privacy-Enhanced Federated Learning Scheme for Internet of Everything
    Li, Zerui
    Tian, Yuchen
    Liao, Qing
    Zhang, Weizhe
    Liu, Yang
    Du, Xiaojiang
    Guizani, Mohsen
    IEEE CONSUMER ELECTRONICS MAGAZINE, 2021, 10 (05) : 93 - 101
  • [25] Privacy-enhanced momentum federated learning via differential privacy and chaotic system in industrial Cyber-Physical systems
    Zhang, Zehui
    Zhang, Linlin
    Li, Qingdan
    Wang, Kunshu
    He, Ningxin
    Gao, Tiegang
    ISA TRANSACTIONS, 2022, 128 : 17 - 31
  • [26] PCFed: Privacy-Enhanced and Communication-Efficient Federated Learning for Industrial IoTs
    Han, Qing
    Yang, Shusen
    Ren, Xuebin
    Zhao, Peng
    Zhao, Cong
    Wang, Yimeng
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (09) : 6181 - 6191
  • [27] SPEFL: Efficient Security and Privacy-Enhanced Federated Learning Against Poisoning Attacks
    Shen, Liyan
    Ke, Zhenhan
    Shi, Jinqiao
    Zhang, Xi
    Sun, Yanwei
    Zhao, Jiapeng
    Wang, Xuebin
    Zhao, Xiaojie
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (08): : 13437 - 13451
  • [28] Tensor-Empowered LSTM for Communication-Efficient and Privacy-Enhanced Cognitive Federated Learning in Intelligent Transportation Systems
    Zhao, Ruonan
    Yang, Laurence T.
    Liu, Debin
    Lu, Wanli
    Zhu, Chenlu
    Ruan, Yiheng
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (02)
  • [29] Privacy-Enhanced System Design Modeling Based on Privacy Features
    Ahmadian, Amir Shayan
    Strueber, Daniel
    Juerjens, Jan
    SAC '19: PROCEEDINGS OF THE 34TH ACM/SIGAPP SYMPOSIUM ON APPLIED COMPUTING, 2019, : 1492 - 1499
  • [30] A personalized federated meta-learning method for intelligent and privacy-preserving fault diagnosis
    Zhang, Xiangjie
    Li, Chuanjiang
    Han, Changkun
    Li, Shaobo
    Feng, Yixiong
    Wang, Haoyu
    Cui, Zuo
    Gryllias, Konstantinos
    ADVANCED ENGINEERING INFORMATICS, 2024, 62