Mesomorphism of imidazolium-based fluorinated ionic liquids

被引:0
|
作者
Pulukkody R. [1 ]
Lee Y.J. [2 ]
Ware T.H. [2 ,3 ]
Pentzer E.B. [1 ,3 ]
机构
[1] Department of Chemistry, Texas A&M University, College Station, 77843, TX
[2] Department of Biomedical Engineering, Texas A&M University, College Station, 77843, TX
[3] Department of Materials Science and Engineering, Texas A&M University, College Station, 77843, TX
来源
Journal of Ionic Liquids | 2024年 / 4卷 / 01期
基金
美国国家科学基金会;
关键词
Fluorinated ionic liquids; Imidazolium-based ionic liquids; Ionic liquid crystals; Temperature-dependent phase behavior;
D O I
10.1016/j.jil.2024.100085
中图分类号
学科分类号
摘要
Ionic liquid crystals have received increasing interest due to their positional and/or orientational order as well as the freedom in molecular motions that arise from the formation of mesophases between solid and liquid. While phase changes of non-fluorinated ionic liquids have been widely reported, there have been few reports on the temperature-dependent phase behavior of fluorinated ionic liquids. Here, we present a series of fluorinated ionic liquids with methylimidazolium cations bearing 1H, 1H, 2H, 2H-perfluoroalkyl chains (butyl, hexyl, and octyl) and halide counterions, and demonstrate their thermotropic mesomorphism. These cations were synthesized under solvent-free conditions, and anion exchange was used to vary the halide counterion. The thermal behavior of the compounds was studied using thermogravimetric analysis and differential scanning calorimetry, revealing both liquid crystalline phases and solid-solid phase transitions. We discovered that the mesomorphic properties of the ionic liquids depend strongly on the length of the perfluoroalkyl pendants. Specifically, ionic liquids with a fluorinated butyl chain showed no mesophase behavior while those with hexyl and octyl fluorinated chains displayed liquid crystalline phases at temperatures above 100 °C. The mesophases were further characterized by polarized optical microscopy and powder X-ray diffraction, highlighting the impact of the fluorinated alkyl chain length. © 2024
引用
收藏
相关论文
共 50 条
  • [11] QSAR for predicting toxicity of imidazolium-based ionic liquids
    Zhao, Yongsheng
    Huang, Ying
    Zhao, Jihong
    Zhang, Xiangping
    Huagong Xuebao/CIESC Journal, 2014, 65 (05): : 1616 - 1621
  • [12] Local solvent properties of imidazolium-based ionic liquids
    Veldhorst, Arno A.
    Faria, Luiz F. O.
    Ribeiro, Mauro C. C.
    JOURNAL OF MOLECULAR LIQUIDS, 2016, 223 : 283 - 288
  • [13] Imidazolium-based chiral ionic liquids: synthesis and application
    Suzuki, Yumiko
    Wakatsuki, Junichiro
    Tsubaki, Mariko
    Sato, Masayuki
    TETRAHEDRON, 2013, 69 (46) : 9690 - 9700
  • [14] Revisited vibrational assignments of imidazolium-based ionic liquids
    Grondin, Joseph
    Lassegues, Jean-Claude
    Cavagnat, Dominique
    Buffeteau, Thierry
    Johansson, Patrik
    Holomb, Roman
    JOURNAL OF RAMAN SPECTROSCOPY, 2011, 42 (04) : 733 - 743
  • [15] Palladium catalysed hydroethoxycarbonylation in imidazolium-based ionic liquids
    Rangits, G
    Kollár, L
    JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2006, 246 (1-2) : 59 - 64
  • [16] The thermochemistry of solvation of imidazolium-based ionic liquids in benzene
    Khachatrian, Artashes A.
    Solomonov, Boris N.
    PHYSICS AND CHEMISTRY OF LIQUIDS, 2020, 58 (01) : 70 - 76
  • [17] Imidazolium-based ionic liquids grafted on solid surfaces
    Xin, Bingwei
    Hao, Jingcheng
    CHEMICAL SOCIETY REVIEWS, 2014, 43 (20) : 7171 - 7187
  • [18] Surface characterization of functionalized imidazolium-based ionic liquids
    Kolbeck, Claudia
    Killian, Manuela
    Maier, Florian
    Paape, Natalia
    Wasserscheid, Peter
    Steinrueck, Hans-Peter
    LANGMUIR, 2008, 24 (17) : 9500 - 9507
  • [19] Rheology of Imidazolium-Based Ionic Liquids with Aromatic Functionality
    Tao, Ran
    Simon, Sindee L.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2015, 119 (35): : 11953 - 11959
  • [20] Extraction of glabridin using imidazolium-based ionic liquids
    Li, Xueqin
    Guo, Ruili
    Zhang, Xiaopeng
    Li, Xiaoyue
    SEPARATION AND PURIFICATION TECHNOLOGY, 2012, 88 : 146 - 150