Improving Alzheimer's Disease Outcomes: Machine Learning Approaches to Predictive Diagnostics with CNN-SVM Hybrid Models

被引:0
|
作者
Vishal [1 ]
Mehta, Shiva [1 ]
Sharma, Pooja [2 ]
机构
[1] Chitkara University Institute of Engineering and Technology, Chitkara University, Centre for Research Impact & Outcome, Punjab, Rajpura,140401, India
[2] Chitkara University, Chitkara Centre for Research and Development, Himachal Pradesh, 174103, India
关键词
Alzheimers disease - Brain health - Confusion matrix - Convolutional neural network - Disaeses brain identification - F1 scores - Machine learning approaches - Performance - Stroke - SVM;
D O I
暂无
中图分类号
学科分类号
摘要
19
引用
收藏
相关论文
共 50 条
  • [41] Comparative analysis of Alzheimer's disease classification by CDR level using CNN, feature selection, and machine-learning techniques
    Khagi, Bijen
    Kwon, Goo-Rak
    Lama, Ramesh
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2019, 29 (03) : 297 - 310
  • [42] Alzheimer's disease detection using residual neural network with LSTM hybrid deep learning models
    Vidhya, R.
    Banavath, Dhanalaxmi
    Kayalvili, S.
    Naidu, Swarna Mahesh
    Prabu, V. Charles
    Sugumar, D.
    Hemalatha, R.
    Vimal, S.
    Vidhya, R. G.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (06) : 12095 - 12109
  • [43] DEVELOPING AN EARLY PREDICTIVE SYSTEM FOR IDENTIFYING GENETIC BIOMARKERS ASSOCIATED TO ALZHEIMER'S DISEASE USING MACHINE LEARNING TECHNIQUES
    Abd El Hamid, Marwa Mostafa
    Mabroukt, Mai S.
    Omar, Yasser M. K.
    BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS, 2019, 31 (05):
  • [44] Benchmarking machine learning models for late-onset alzheimer's disease prediction from genomic data
    De Velasco Oriol, Javier
    Vallejo, Edgar E.
    Estrada, Karol
    Tamez Pena, Jose Gerardo
    BMC BIOINFORMATICS, 2019, 20 (01)
  • [45] Comparison of Machine Learning-based Approaches to Predict the Conversion to Alzheimer?s Disease from Mild Cognitive Impairment
    Franciotti, Raffaella
    Nardini, Davide
    Russo, Mirella
    Onofrj, Marco
    Sensi, Stefano L.
    NEUROSCIENCE, 2023, 514 : 143 - 152
  • [46] Benchmarking machine learning models for late-onset alzheimer’s disease prediction from genomic data
    Javier De Velasco Oriol
    Edgar E. Vallejo
    Karol Estrada
    José Gerardo Taméz Peña
    The Alzheimer’s Disease Neuroimaging Initiative
    BMC Bioinformatics, 20
  • [47] Plasma d-glutamate levels for detecting mild cognitive impairment and Alzheimer's disease: Machine learning approaches
    Chang, Chun-Hung
    Lin, Chieh-Hsin
    Liu, Chieh-Yu
    Huang, Chih-Sheng
    Chen, Shaw-Ji
    Lin, Wen-Cheng
    Yang, Hui-Ting
    Lane, Hsien-Yuan
    JOURNAL OF PSYCHOPHARMACOLOGY, 2021, 35 (03) : 265 - 272
  • [48] Machine learning models identify ferroptosis-related genes as potential diagnostic biomarkers for Alzheimer's disease
    Deng, Yanyao
    Feng, Yanjin
    Lv, Zhicheng
    He, Jinli
    Chen, Xun
    Wang, Chen
    Yuan, Mingyang
    Xu, Ting
    Gao, Wenzhe
    Chen, Dongjie
    Zhu, Hongwei
    Hou, Deren
    FRONTIERS IN AGING NEUROSCIENCE, 2022, 14
  • [49] Machine Learning models for detection and assessment of progression in Alzheimer's disease based on blood and cerebrospinal fluid biomarkers
    Luz, Saturnino
    Haider, Fasih
    De Sousa, Paul
    2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC, 2023,
  • [50] Identification of acetylcholinesterase inhibitors from traditional medicinal plants for Alzheimer's disease using in silico and machine learning approaches
    Islam, Md. Tarikul
    Aktaruzzaman, Md.
    Saif, Ahmed
    Hasan, Al Riyad
    Sourov, Md. Mehedi Hasan
    Sikdar, Bratati
    Rehman, Saira
    Tabassum, Afrida
    Abeed-Ul-Haque, Syed
    Sakib, Mehedi Hasan
    Muhib, Md. Muntasir Alam
    Setu, Md. Ali Ahasan
    Tasnim, Faria
    Rayhan, Rifat
    Abdel-Daim, Mohamed M.
    Raihan, Md. Obayed
    RSC Advances, 2024, 14 (47) : 34620 - 34636