Water Wheel Plant Dingo Optimizer enabled Deep Convolutional Neural Network for disease detection using hyperspectral leaf image

被引:1
|
作者
Swaraj, S. [1 ]
Aparna, S. [1 ]
机构
[1] GITAM Univ, GITAM Sch Technol, Dept Comp Sci & Engn, Hyderabad Campus Rudraram, Hyderabad 502329, Telangana, India
关键词
Hyperspectral leaf image; Disease detection; Dingo Optimizer (DOX); Local Binary Pattern (LBP); Water Wheel Plant Algorithm (WWPA); CLASSIFICATION;
D O I
10.1016/j.infrared.2024.105522
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Problem: In many countries, agriculture is the main source of people's livelihood and satisfies their nutritional needs. Early detection of plant diseases through agricultural remote monitoring is important to prevent the disease's spread. The traditional methods require sampling and can damage the plant, but hyperspectral imaging is non-destructive. Aim: The major aim of this research is to devise a Water Wheel Plant Dingo Optimizer_Deep Convolutional Neural Network (WWPDO_Deep CNN) for disease detection using a hyperspectral leaf image. Methods: Initially, the input leaf image is given into the leaf segmentation phase, which is done using the proposed Water Wheel Plant Dingo Optimizer (WWPDO), which is the amalgamation of the Water Wheel Plant Algorithm (WWPA) and Dingo Optimizer (DOX). The selected bands' outputs are subjected to leaf segmentation and which is carried out by employing Bayesian Fuzzy Clustering (BFC). Thereafter, leaf segmented outputs are fussed using the majority voting method. Fused output and individual leaf segmentation output are given into the feature extraction process to extract features, such as local binary patterns and Weber local descriptors. Finally, leaf disease detection is performed using a deep Convolutional Neural Network (Deep CNN) for normal and abnormal cases. The hyperparameters of the Deep CNN are fine-tuned based on the proposed WWPADO. Results: The proposed WWPDO_Deep CNN achieved an excellent performance with an accuracy of 91.35 %, a True Positive Rate (TPR) of 93.13 % and a True Negative Rate (TNR) of 90.76 %. Conclusion: The WWPDO_Deep CNN is applicable for early diagnosis under the new classification system and provides a new direction for early diagnosis based on hyperspectral images. Also, the devised model provides an accurate diagnosis of plant diseases. Early and accurate detection allows targeted treatment, reduces the need for widespread pesticide application and promotes more sustainable farming practices.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Hyperspectral image super-resolution using deep convolutional neural network
    Li, Yunsong
    Hu, Jing
    Zhao, Xi
    Xie, Weiying
    Li, JiaoJiao
    NEUROCOMPUTING, 2017, 266 : 29 - 41
  • [22] Botanical Leaf Disease Detection and Classification Using Convolutional Neural Network: A Hybrid Metaheuristic Enabled Approach
    Mohapatra, Madhumini
    Parida, Ami Kumar
    Mallick, Pradeep Kumar
    Zymbler, Mikhail
    Kumar, Sachin
    COMPUTERS, 2022, 11 (05)
  • [23] Skill-Honey Badger Optimisation Algorithm-Enabled Deep Convolutional Neural Network for Multiclass Leaf Disease Detection in Tomato Plant
    Trivedi, Naresh Kumar
    Jain, Sachin
    Misra, Alok
    Tiwari, Raj Gaurang
    Maheshwari, Shikha
    Gautam, Vinay
    JOURNAL OF PHYTOPATHOLOGY, 2024, 172 (06)
  • [24] Hyperspectral image reconstruction by deep convolutional neural network for classification
    Li, Yunsong
    Xie, Weiying
    Li, Huaqing
    PATTERN RECOGNITION, 2017, 63 : 371 - 383
  • [25] Detection of leaf disease in tomato plants using a lightweight parallel deep convolutional neural network
    Deshpande, Rashmi
    Patidar, Hemant
    ARCHIVES OF PHYTOPATHOLOGY AND PLANT PROTECTION, 2023, 56 (09) : 707 - 720
  • [26] Identification of tomato leaf disease detection using pretrained deep convolutional neural network models
    Anandhakrishnan T.
    Jaisakthi S.M.
    Scalable Computing, 2020, 21 (04): : 625 - 635
  • [27] IDENTIFICATION OF TOMATO LEAF DISEASE DETECTION USING PRETRAINED DEEP CONVOLUTIONAL NEURAL NETWORK MODELS
    Anandhakrishnan, T.
    Jaisakthi, S. M.
    SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2020, 21 (04): : 625 - 635
  • [28] Deep Convolutional Neural Networks for image based tomato leaf disease detection
    Anandhakrishnan, T.
    Jaisakthi, S. M.
    SUSTAINABLE CHEMISTRY AND PHARMACY, 2022, 30
  • [29] Image-based Oil Palm Leaf Disease Detection using Convolutional Neural Network
    Ong, Jia Heng
    Ong, Pauline
    Woon, Kiow Lee
    JOURNAL OF INFORMATION AND COMMUNICATION TECHNOLOGY-MALAYSIA, 2022, 21 (03): : 383 - 410
  • [30] Tomato Leaf Disease Identification and Detection Based on Deep Convolutional Neural Network
    Wu, Yang
    Xu, Lihong
    Goodman, Erik D.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2021, 28 (02): : 561 - 576