Prompt-Ladder: Memory-efficient prompt tuning for vision-language models on edge devices

被引:0
|
作者
Cai, Siqi [1 ]
Liu, Xuan [2 ]
Yuan, Jingling [1 ]
Zhou, Qihua [3 ]
机构
[1] School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan, China
[2] Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hong Kong
[3] School of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
基金
中国国家自然科学基金;
关键词
Ladders - Semantics - Transfer learning - Visual languages;
D O I
10.1016/j.patcog.2025.111460
中图分类号
学科分类号
摘要
The pre-trained vision-language models (VLMs) have been the foundation for diverse intelligent services in human life. Common VLMs hold large parameter scales and require heavy memory overhead for model pre-training, which poses challenges in adapting them to edge devices. To enable memory-efficient VLMs, previous works mainly focus on the prompt engineering technique that utilizes trainable soft prompts instead of manually designing hard prompts. However, to update fewer than 3% of prompt parameters, these studies still require the back-propagation chain to traverse pre-trained models with extensive parameters. Consequently, the intermediate activation variables and gradients occupy a significant amount of memory resources, greatly hindering their adaptation on resource-constrained edge devices. In view of the above, we propose a memory-efficient prompt-tuning method, named Prompt-Ladder. Our main idea is to adopt a lightweight ladder network as an agent to bypass VLMs during back-propagation for the parameter optimization of the designed multi-model prompt module. The ladder network fuses the intermediate output of VLMs as a guide and selects important parameters of VLMs to initialize for the maintenance of model performance. We also share parameters of the ladder network between text and image data to obtain a more semantically aligned representation across modalities for the optimization of the prompt module. The experiments across seven datasets demonstrate that Prompt-Ladder can significantly reduce memory resource usage by at least 27% compared to baselines while maintaining relatively good performance. © 2025 Elsevier Ltd
引用
下载
收藏
相关论文
共 50 条
  • [21] SwapPrompt: Test-Time Prompt Adaptation for Vision-Language Models
    Ma, Xiaosong
    Zhang, Jie
    Guo, Song
    Xu, Wenchao
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [22] Constraint embedding for prompt tuning in vision-language pre-trained modelConstraint embedding for prompt tuning in vision-language pre-trained modelK. Cheng et al.
    Keyang Cheng
    Liutao Wei
    Jingfeng Tang
    Yongzhao Zhan
    Multimedia Systems, 2025, 31 (1)
  • [23] CoPL: Contextual Prompt Learning for Vision-Language Understanding
    Goswami, Koustava
    Karanam, Srikrishna
    Udhayanan, Prateksha
    Joseph, K. J.
    Srinivasan, Balaji Vasan
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 16, 2024, : 18090 - 18098
  • [24] A Good Prompt Is Worth Millions of Parameters: Low-resource Prompt-based Learning for Vision-Language Models
    Jin, Woojeong
    Cheng, Yu
    Shen, Yelong
    Chen, Weizhu
    Ren, Xiang
    PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 2763 - 2775
  • [25] Modal interaction-enhanced prompt learning by transformer decoder for vision-language models
    Mingyue Liu
    Honggang Zhao
    Longfei Ma
    Mingyong Li
    International Journal of Multimedia Information Retrieval, 2023, 12
  • [26] Pre-training A Prompt Pool for Vision-Language Model
    Liu, Jun
    Gu, Yang
    Yang, Zhaohua
    Guo, Shuai
    Liu, Huaqiu
    Chen, Yiqiang
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [27] Modal Interaction-Enhanced Prompt Learning by Transformer Decoder for Vision-Language Models
    Liu, Mingyue
    Zhao, Honggang
    Ma, Longfei
    Li, Xiang
    Ji, Yucheng
    Li, Mingyong
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT IV, KSEM 2023, 2023, 14120 : 163 - 174
  • [28] Fine-Grained Visual Prompt Learning of Vision-Language Models for Image Recognition
    Sun, Hongbo
    He, Xiangteng
    Zhou, Jiahuan
    Peng, Yuxin
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 5828 - 5836
  • [29] Modal interaction-enhanced prompt learning by transformer decoder for vision-language models
    Liu, Mingyue
    Zhao, Honggang
    Ma, Longfei
    Li, Mingyong
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2023, 12 (02)
  • [30] Gradient-Regulated Meta-Prompt Learning for Generalizable Vision-Language Models
    Li, Juncheng
    Gao, Minghe
    Wei, Longhui
    Tang, Siliang
    Zhang, Wenqiao
    Li, Mengze
    Ji, Wei
    Tian, Qi
    Chua, Tat-Seng
    Zhuang, Yueting
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 2551 - 2562