Joint Trajectory Control, Frequency Allocation, and Routing for UAV Swarm Networks: A Multi-Agent Deep Reinforcement Learning Approach

被引:1
|
作者
Alam, Muhammad Morshed [1 ]
Moh, Sangman [2 ]
机构
[1] Amer Int Univ Bangladesh, Dept Elect & Elect Engn, Dhaka 1229, Bangladesh
[2] Chosun Univ, Dept Comp Engn, Gwangju 61452, South Korea
基金
新加坡国家研究基金会;
关键词
Autonomous aerial vehicles; Trajectory; Routing; Radio spectrum management; Delays; Topology; Network topology; Multi-agent deep deterministic policy gradient; frequency allocation; routing; trajectory control; UAV swarm network; AD HOC NETWORKS; POWER-CONTROL; COMMUNICATION; DESIGN;
D O I
10.1109/TMC.2024.3403890
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Collaborative unmanned aerial vehicle (UAV) swarm networks can effectively execute various emerging missions such as surveillance and communication coverage. However, due to high mobility and constrained transmission range, packet routing encounters mutual interferences, link breakages, and unexpected delays. In such networks, routing performance is coupled with trajectory control, frequency allocation, and relay selection. In this study, we propose a joint trajectory control, frequency allocation, and packet routing (JTFR) algorithm, in which link utility is maximized by considering the link stability, signal-to-interference-plus-noise ratio, queuing delay, and residual energy of UAVs. The proposed JTFR employs adaptive distributed multi-agent deep deterministic policy gradient coupled with the swarming behavior to obtain the optimal solution. For each UAV, an actor network is established by utilizing a long short-term memory-based state representation layer containing two-hop neighbor information to adopt the dynamic time-varying topology. Subsequently, a scalable multi-head attentional critic network is set up to adaptively adjust the actor network policy of each UAV by collaborating with neighbors. The extensive simulation results show that JTFR outperforms existing routing protocols by 30-60% less end-to-end delay, 15-32% better packet delivery ratio, and 20-46% less energy consumption.
引用
收藏
页码:11989 / 12005
页数:17
相关论文
共 50 条
  • [21] Resource Allocation in UAV-D2D Networks: A Scalable Heterogeneous Multi-Agent Deep Reinforcement Learning Approach
    Wang, Huayuan
    Li, Hui
    Wang, Xin
    Xia, Shilin
    Liu, Tao
    Wang, Ruonan
    ELECTRONICS, 2024, 13 (22)
  • [22] Multi-Agent Deep Reinforcement Learning Joint Beamforming for Slicing Resource Allocation
    Yan, Dandan
    Ng, Benjamin K.
    Ke, Wei
    Lam, Chan-Tong
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (05) : 1220 - 1224
  • [23] The Application of Multi-Agent Reinforcement Learning in UAV Networks
    Cui, Jingjing
    Liu, Yuanwei
    Nallanathan, Arumugam
    2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2019,
  • [24] Trajectory Control in Self-sustainable UAV-aided mmWave Networks: A Constrained Multi-agent Reinforcement Learning Approach
    Chen, Wei
    Chang, Deng-Kai
    Chen, Yu-Jia
    2022 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2022, : 1017 - 1022
  • [25] UAV-Assisted Fair Communication for Mobile Networks: A Multi-Agent Deep Reinforcement Learning Approach
    Zhou, Yi
    Jin, Zhanqi
    Shi, Huaguang
    Wang, Zhangyun
    Lu, Ning
    Liu, Fuqiang
    REMOTE SENSING, 2022, 14 (22)
  • [26] Multi-Agent Deep Reinforcement Learning for Dynamic Power Allocation in Wireless Networks
    Nasir, Yasar Sinan
    Guo, Dongning
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2019, 37 (10) : 2239 - 2250
  • [27] Deep Reinforcement Learning for Trajectory Design and Power Allocation in UAV Networks
    Zhao, Nan
    Cheng, Yiqiang
    Pei, Yiyang
    Liang, Ying-Chang
    Niyato, Dusit
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [28] Fair collaborative vehicle routing: A deep multi-agent reinforcement learning approach
    Mak, Stephen
    Xu, Liming
    Pearce, Tim
    Ostroumov, Michael
    Brintrup, Alexandra
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2023, 157
  • [29] Multi-Agent Deep Reinforcement Learning for Full-Duplex Multi-UAV Networks
    Dai, Chen
    Zhu, Kun
    Hossain, Ekram
    2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, : 2232 - 2237
  • [30] Multi-Agent Deep Reinforcement Learning for Secure UAV Communications
    Zhang, Yu
    Zhuang, Zirui
    Gao, Feifei
    Wang, Jingyu
    Han, Zhu
    2020 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2020,