Effect of calcium carbide slag on the durability of alkali-activated ground granulated blast furnace slag-fly ash cementitious system

被引:0
|
作者
Mei, Junpeng [1 ,2 ,3 ]
Yin, Chen [1 ]
Zhao, Yanjun [4 ]
Niu, Yinlong [4 ]
Xie, Anhe [1 ]
Li, Shuang [1 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Urban Construct, Wuhan 430065, Peoples R China
[2] Hubei Prov Engn Res Ctr Urban Regenerat, Wuhan 430065, Peoples R China
[3] Wuhan Univ Sci & Technol, Inst High Performance Engn Struct, Wuhan 430065, Peoples R China
[4] China Construct Third Bur First Engn Co Ltd, Wuhan 430040, Peoples R China
来源
ZKG INTERNATIONAL | 2024年 / 77卷 / 08期
关键词
SHRINKAGE; GEOPOLYMER;
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this paper, alkali-activated composite cementitious materials were prepared by using calcium carbide slag, ground granulated blast-furnace slag (GGBS), and fly ash as raw materials, and a combination of sodium hydroxide and sodium silicate solutions were used as alkali activators of binders. The drying shrinkage, resistance to chlorine ion permeability, sulfate resistance, and mechanical properties of GGBS-fly ash cementitious system with different contents of calcium carbide slag were investigated. In addition, the changes in hydration products were also analyzed by X-ray diffraction (XRD). The results show that: when the content of calcium carbide slag instead of fly ash or GGBS is gradually increased, the drying shrinkage of the composite cementitious material decreases dramatically, the compressive strength and flexural strengths corrosion resistance coefficient increase first and then decrease, the compressive strength corrosion resistance coefficient decreases weakly. The primary hydration products of the composite cementitious material with varying calcium carbide slag content are calcium silicate hydrate (C-S-H) and calcium aluminosilicate hydrate (C-A-S-H) and these products remain stable under sodium sulfate erosion. Overall, the optimal properties were achieved with 3% calcium carbide slag replacing fly ash, which exhibits a 28 d drying shrinkage of 9672 mu epsilon, an electrical flux of 2868 C, a compressive strength of 67.3 MPa after 120 d of full immersion in sodium sulfate, a flexural strength corrosion resistance coefficient of 1.21, and a compressive strength corrosion resistance coefficient of 1.02.
引用
收藏
页码:42 / 50
页数:9
相关论文
共 50 条
  • [1] Sustainable Cementitious Materials: Strength and Microstructural Characteristics of Calcium Carbide Residue-Activated Ground Granulated Blast Furnace Slag-Fly Ash Composites
    Liu, Xing
    Xiao, Guiyuan
    Yang, Dunhan
    Dai, Lin
    Tang, Aiwei
    SUSTAINABILITY, 2024, 16 (24)
  • [2] Hydration of alkali-activated ground granulated blast furnace slag
    Song, S
    Sohn, D
    Jennings, HM
    Mason, TO
    JOURNAL OF MATERIALS SCIENCE, 2000, 35 (01) : 249 - 257
  • [3] Hydration of alkali-activated ground granulated blast furnace slag
    S. Song
    D. Sohn
    H. M. Jennings
    T. O. Mason
    Journal of Materials Science, 2000, 35 : 249 - 257
  • [4] Study on Shrinkage in Alkali-Activated Slag-Fly Ash Cementitious Materials
    Cui, Peng
    Wan, Yuanyuan
    Shao, Xuejun
    Ling, Xinyu
    Zhao, Long
    Gong, Yongfan
    Zhu, Chenhui
    MATERIALS, 2023, 16 (11)
  • [5] Study on the properties of alkali-activated phosphorus slag mortar mixed with granulated blast furnace slag/fly ash
    Zhang, Yannian
    Wu, Qi
    Yang, Daokui
    Wang, Qingjie
    Qu, Zhifu
    Zhong, Yugang
    JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY, 2024, 60 (04) : 1281 - 1291
  • [6] Properties of alkali-activated ground granulated blast furnace slag blended with ferronickel slag
    Cao, Ruilin
    Li, Baoliang
    You, Nanqiao
    Zhang, Yamei
    Zhang, Zuhua
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 192 : 123 - 132
  • [7] Alkali-activated ground granulated blast-furnace slag incorporating incinerator fly ash as a potential binder
    Liu, Yiquan
    Zhu, Weiping
    Yang, En-Hua
    CONSTRUCTION AND BUILDING MATERIALS, 2016, 112 : 1005 - 1012
  • [8] Efficient use of steel slag in alkali-activated fly ash-steel slag-ground granulated blast furnace slag ternary blends
    Song, Weilong
    Zhu, Zhiduo
    Pu, Shaoyun
    Wan, Yu
    Huo, Wangwen
    Song, Shigong
    Zhang, Jun
    Yao, Kai
    Hu, Lele
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 259
  • [9] Effect of the Combined Using of Fly Ash and Granulated Blast Furnace Slag on Properties of Cementless Alkali-Activated Mortar
    Koh, Kyungtaek
    Ryu, Gumsung
    Kim, Shihwan
    Lee, Janghwa
    APPLICATIONS OF ENGINEERING MATERIALS, PTS 1-4, 2011, 287-290 : 916 - 921
  • [10] Rice husk ash as a source of silica in alkali-activated fly ash and granulated blast furnace slag systems
    Mejia, J. M.
    Mejia de Gutierrez, R.
    Puertas, F.
    MATERIALES DE CONSTRUCCION, 2013, 63 (311) : 361 - 375