Coupled Thermal and Power Transport of Optical Waveguide Arrays: Photonic Wiedemann-Franz Law and Rectification Effect

被引:0
|
作者
Lian, Meng [1 ,2 ]
Geng, Yue [1 ,2 ]
Chen, Yin-Jie [1 ,2 ]
Chen, Yuntian [3 ,4 ]
Lue, Jing-Tao [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Inst Quantum Sci & Engn, Sch Phys, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Wuhan Natl High Magnet Field Ctr, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
[4] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
STATISTICAL-MECHANICS; MULTIMODE; PHYSICS;
D O I
10.1103/PhysRevLett.133.116303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In isolated nonlinear optical waveguide arrays, simultaneous conservation of longitudinal momentum flow ("internal energy") and optical power ("particle number") of the optical modes enables study of coupled thermal and particle transport in the negative temperature regime. Based on exact numerical simulation and rationale from Landauer formalism, we predict generic photonic version of the WiedemannFranz law in such systems, with the Lorenz number L proportional to jTj-2. This is rooted in the spectral decoupling of thermal and particle current, and their different temperature dependence. In addition, in asymmetric junctions, relaxation of the system toward equilibrium shows apparent asymmetry for positive and negative biases, indicating rectification behavior. This Letter illustrates the possibility of simulate nonequilibrium transport processes using optical networks, in parameter regimes difficult to reach in natural condensed matter or atomic gas systems. It also provides new insights in manipulating power and momentum flow of optical waves in artificial waveguide arrays.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Wiedemann-Franz Relation and Thermal-Transistor Effect in Suspended Graphene
    Yigen, S.
    Champagne, A. R.
    NANO LETTERS, 2014, 14 (01) : 289 - 293
  • [22] Thermal conductivity and the Wiedemann-Franz law in the fractional quantum Hall effect regime around ν=1/2
    Karavolas, V. C.
    SUPERLATTICES AND MICROSTRUCTURES, 2010, 48 (02) : 230 - 238
  • [23] Effect of Electrical Contact Resistance on Measurement of Thermal Conductivity and Wiedemann-Franz Law for Individual Metallic Nanowires
    Jianli Wang
    Zhizheng Wu
    Chengkun Mao
    Yunfeng Zhao
    Juekuan Yang
    Yunfei Chen
    Scientific Reports, 8
  • [24] Effect of Electrical Contact Resistance on Measurement of Thermal Conductivity and Wiedemann-Franz Law for Individual Metallic Nanowires
    Wang, Jianli
    Wu, Zhizheng
    Mao, Chengkun
    Zhao, Yunfeng
    Yang, Juekuan
    Chen, Yunfei
    SCIENTIFIC REPORTS, 2018, 8
  • [25] Systematic study of the Wiedemann-Franz law in the quantum-Hall-effect regime
    Karavolas, VC
    Triberis, GP
    PHYSICAL REVIEW B, 1999, 59 (11): : 7590 - 7595
  • [26] Thermal conductivity in metallic nanostructures at high temperature: Electrons, phonons, and the Wiedemann-Franz law
    Stojanovic, N.
    Maithripala, D. H. S.
    Berg, J. M.
    Holtz, M.
    PHYSICAL REVIEW B, 2010, 82 (07):
  • [27] Enhancement of thermoelectric efficiency and violation of the Wiedemann-Franz law due to Fano effect
    Gomez-Silva, G.
    Avalos-Ovando, O.
    Ladron de Guevara, M. L.
    Orellana, P. A.
    JOURNAL OF APPLIED PHYSICS, 2012, 111 (05)
  • [28] Violation of the Wiedemann-Franz law through reduction of thermal conductivity in gold thin films
    Mason, S. J.
    Wesenberg, D. J.
    Hojem, A.
    Manno, M.
    Leighton, C.
    Zink, B. L.
    PHYSICAL REVIEW MATERIALS, 2020, 4 (06):
  • [29] Gravito-thermal transports, Onsager reciprocal relation and gravitational Wiedemann-Franz law
    Hao, Xin
    Liu, Song
    Zhao, Liu
    NUCLEAR PHYSICS B, 2024, 1001
  • [30] Restricted Wiedemann-Franz Law and Vanishing Thermoelectric Power in One-Dimensional Conductors
    Kuroda, Marcelo A.
    Leburton, Jean-Pierre
    PHYSICAL REVIEW LETTERS, 2008, 101 (25)