Coupled Thermal and Power Transport of Optical Waveguide Arrays: Photonic Wiedemann-Franz Law and Rectification Effect

被引:0
|
作者
Lian, Meng [1 ,2 ]
Geng, Yue [1 ,2 ]
Chen, Yin-Jie [1 ,2 ]
Chen, Yuntian [3 ,4 ]
Lue, Jing-Tao [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Inst Quantum Sci & Engn, Sch Phys, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Wuhan Natl High Magnet Field Ctr, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
[4] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
STATISTICAL-MECHANICS; MULTIMODE; PHYSICS;
D O I
10.1103/PhysRevLett.133.116303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In isolated nonlinear optical waveguide arrays, simultaneous conservation of longitudinal momentum flow ("internal energy") and optical power ("particle number") of the optical modes enables study of coupled thermal and particle transport in the negative temperature regime. Based on exact numerical simulation and rationale from Landauer formalism, we predict generic photonic version of the WiedemannFranz law in such systems, with the Lorenz number L proportional to jTj-2. This is rooted in the spectral decoupling of thermal and particle current, and their different temperature dependence. In addition, in asymmetric junctions, relaxation of the system toward equilibrium shows apparent asymmetry for positive and negative biases, indicating rectification behavior. This Letter illustrates the possibility of simulate nonequilibrium transport processes using optical networks, in parameter regimes difficult to reach in natural condensed matter or atomic gas systems. It also provides new insights in manipulating power and momentum flow of optical waves in artificial waveguide arrays.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Nonlinear heat transport in mesoscopic conductors: Rectification, Peltier effect, and Wiedemann-Franz law
    Lopez, Rosa
    Sanchez, David
    PHYSICAL REVIEW B, 2013, 88 (04)
  • [2] Wiedemann-Franz law for magnon transport
    Nakata, Kouki
    Simon, Pascal
    Loss, Daniel
    PHYSICAL REVIEW B, 2015, 92 (13):
  • [3] Thermal transport and Wiedemann-Franz law in the disordered Fermi liquid
    Schwiete, G.
    Finkel'stein, A. M.
    PHYSICAL REVIEW B, 2014, 90 (06):
  • [4] Wiedemann-Franz Law for Molecular Hopping Transport
    Craven, Galen T.
    Nitzan, Abraham
    NANO LETTERS, 2020, 20 (02) : 989 - 993
  • [5] Thermal Hall effect and the Wiedemann-Franz law in Chern insulator
    Wang, Anxin
    Qin, Tao
    CHINESE PHYSICS B, 2023, 32 (10)
  • [6] Magnonic quantum Hall effect and Wiedemann-Franz law
    Nakata, Kouki
    Klinovaja, Jelena
    Loss, Daniel
    PHYSICAL REVIEW B, 2017, 95 (12)
  • [7] Theoretical Aspects of Thermal Transport in Complex Metallic Alloys: A Generalization of the Wiedemann-Franz Law
    Macia, Enrique
    CROATICA CHEMICA ACTA, 2010, 83 (01) : 65 - 68
  • [8] Electronic thermal conductivity and the Wiedemann-Franz law for unconventional superconductors
    Graf, MJ
    Yip, SK
    Sauls, JA
    Rainer, D
    PHYSICAL REVIEW B, 1996, 53 (22): : 15147 - 15161
  • [9] Electronic thermal conductivity and the Wiedemann-Franz law for unconventional superconductors
    Graf, M. J.
    Yip, S.-K.
    Sauls, J. A.
    Rainer, D.
    Physical Review B: Condensed Matter, 53 (22):
  • [10] Thermal conductance of metallic atomic-size contacts: Phonon transport and Wiedemann-Franz law
    Kloeckner, J. C.
    Matt, M.
    Nielaba, P.
    Pauly, F.
    Cuevas, J. C.
    PHYSICAL REVIEW B, 2017, 96 (20)