Enhancing the Self-Healing Efficiency of Ti3AlC2 MAX Phase via Irradiation

被引:1
|
作者
Cui, Junfeng [1 ,2 ]
Zhang, Lei [1 ]
Hu, Xiaofei [1 ]
Yang, Yingying [3 ]
Sun, Jie [1 ]
Li, Youbing [4 ,5 ]
Chen, Guoxin [1 ]
Tang, Chun [6 ]
Ke, Peiling [1 ,2 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Publ Technol Ctr, Ningbo 315201, Peoples R China
[2] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Key Lab Adv Marine Mat, Ningbo 315201, Peoples R China
[3] Shandong Univ Technol, Sch Phys & Optoelect Engn, Zibo 255000, Peoples R China
[4] Soochow Univ, Sch Radiol & Interdisciplinary Sci RAD X, State Key Lab Radiat Med & Protect, Suzhou 215123, Jiangsu, Peoples R China
[5] Soochow Univ, Jiangsu Higher Educ Inst, Collaborat Innovat Ctr Radiat Med, Suzhou 215123, Jiangsu, Peoples R China
[6] Jiangsu Univ, Fac Civil Engn & Mech, Zhenjiang 212013, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
self-healing efficiency; irradiation; MAX phase; spontaneous rebonding; <italic>in situ</italic>; STRUCTURAL TRANSITIONS; MECHANICAL-PROPERTIES; TI2ALC; CRACKS; AL2O3;
D O I
10.1021/acs.nanolett.4c04840
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Self-healing materials are highly desirable in the nuclear industry to ensure nuclear security. Although extensive efforts have been devoted to developing self-healing materials in the past half century, very limited successes have been reported for ceramics or metals. Here, we report an intrinsic self-healing material of Ti3AlC2 MAX phase, which exhibits both ceramic and metallic properties, and a strategy for further enhancing the self-healing via irradiation is proposed. Quantitative in situ transmission electron microscopy tensile testing reveals that the fracture strength of 1.58 GPa is achieved on thoroughly fractured Ti3AlC2, corresponding to the self-healing efficiency of 19.8%, which is increased to 28.1% after irradiation. In situ irradiation experiments, atomic-resolution characterizations, and molecular dynamics simulations reveal that spontaneous rebonding of partial atoms on fracture surfaces is responsible for the self-healing, and irradiation-enhanced atomic migration, interplanar spacing increment, and gap-filling contribute to the self-healing enhancement.
引用
收藏
页码:14884 / 14891
页数:8
相关论文
共 50 条
  • [1] Highly Efficient Self-Healing of Fractured Ti3AlC2 MAX Phase Nanowires
    Cui, Junfeng
    Hu, Xiaofei
    Zhang, Lei
    Yang, Yingying
    Li, Youbing
    Chen, Guoxin
    Tang, Chun
    Ke, Peiling
    ADVANCED FUNCTIONAL MATERIALS, 2024,
  • [2] Self-healing of indentation damage in Ti2AlC MAX phase ceramics
    Lee, Kee Sung
    Ahn, Hyeonji
    Lee, Gye Won
    Sloof, Willem G.
    MATERIALS LETTERS, 2023, 334
  • [3] Creep of the Ti3AlC2 MAX-phase ceramics
    Boyko, Yu, I
    Bogdanov, V. V.
    Gevorkyan, E. S.
    Vovk, R. V.
    Korshak, V. F.
    Kolesnichertho, V. A.
    FUNCTIONAL MATERIALS, 2019, 26 (01): : 83 - 87
  • [4] Charge and heat transfer of the Ti3AlC2 MAX phase
    R. V. Vovk
    G. Ya. Khadzhai
    T. A. Prikhna
    E. S. Gevorkyan
    M. V. Kislitsa
    A. L. Soloviev
    I. L. Goulatis
    A. Chroneos
    Journal of Materials Science: Materials in Electronics, 2018, 29 : 11478 - 11481
  • [5] Charge and heat transfer of the Ti3AlC2 MAX phase
    Vovk, R. V.
    Khadzhai, G. Ya
    Prikhna, T. A.
    Gevorkyan, E. S.
    Kislitsa, M. V.
    Soloviev, A. L.
    Goulatis, I. L.
    Chroneos, A.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2018, 29 (13) : 11478 - 11481
  • [6] Irradiation resistance properties studies on helium ions irradiated MAX phase Ti3AlC2
    Song, Peng
    Sun, Jianrong
    Wang, Zhiguang
    Cui, Minghuan
    Shen, Tielong
    Li, Yuanfei
    Pang, Lilong
    Zhu, Yabin
    Huang, Qing
    Lu, Jinjun
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2014, 326 : 332 - 336
  • [7] Study on the creep behavior and mechanisms of Ti3AlC2 MAX phase under ion irradiation
    Cheng, Zhaoyi
    Sun, Jianrong
    Zhang, Linqi
    Deng, Tianyu
    Yi, Wen
    Chen, Huaican
    Chang, Hailong
    Tai, Pengfei
    Tian, Yinan
    Li, Jian
    Zhang, Wei
    Gao, Pengcheng
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2025, 45 (05)
  • [8] Enhanced oxidation resistance in Ti 3 AlC 2 via selective self-healing
    Guo, Kai -Yu
    Meng, Guo-Hui
    Yang, Guan-Jun
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2024, 44 (14)
  • [9] Halogen Etch of Ti3AlC2 MAX Phase for MXene Fabrication
    Jawaid, Ali
    Hassan, Asra
    Neher, Gregory
    Nepal, Dhriti
    Pachter, Ruth
    Kennedy, W. Joshua
    Ramakrishnan, Subramanian
    Vaia, Richard A.
    ACS NANO, 2021, 15 (02) : 2771 - 2777
  • [10] Synthesis of Ti3AlC2 MAX Phase in KBr Protective Melt
    Nagornov, I. A.
    Sapronova, V. M.
    Gorobtsov, Ph. Y.
    Mokrushin, A. S.
    Simonenko, N. P.
    Simonenko, E. P.
    Kuznetsov, N. T.
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2024, 69 (14) : 2184 - 2192