Thermal performance analysis of sinusoidal corrugated channels: A comparative study of thermo-hydraulic and entropy generation

被引:2
|
作者
Al-Daamee, Fatimah Q. [1 ]
Hamza, Naseer H. [1 ]
Khan, M. Ijaz [2 ]
Al-Dossari, Mawaheb [3 ]
机构
[1] Univ Al Qadisiyah, Mech Engn Dept, Al Diwaniyah 58001, Iraq
[2] Prince Mohammad Bin Fahd Univ, Coll Engn, Dept Mech Engn, POB 1664, Al Khobar 31952, Saudi Arabia
[3] King Khalid Univ, Dahran Aljanoub Appl Coll, Abha 62529, Saudi Arabia
关键词
HEAT-TRANSFER ENHANCEMENT; FORCED-CONVECTION; PRESSURE-DROP; WAVY CHANNEL; FLOW; DUCT; WALL;
D O I
10.1063/5.0223856
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The physical properties of working fluids-in terms of the Prandtl number-play a crucial role in determining their thermal performance in the internal flow, especially their viscosity. This study first considers the thermo-hydraulic and entropy generation of a sinusoidal corrugated channel in two configurations: symmetrical (raccoon) and asymmetrical (serpentine). Results are presented for different ranges of operating parameters, such as 100 <= Re <= 700 and 0.72 <= Pr <= 90, and for geometrical parameters such as the wave amplitude-to-wavelength ratio 0.2 <=alpha <= 0.6. In addition, the results of the two channels were compared with each other's and with the straight channel. Control transport equations are solved using finite element methods. It was found that the flow inside the wavy channels generated re-circulatory reigns, and their size was affected by the wave parameters as well as the Reynolds number. Also, employing high values of Pr extremely enhanced the heat transfer rate (HTR) of the wavy channels over the straight for all values of alpha and for both raccoon and serpentine channels. In addition, the results indicated that raccoon channels have higher HTR and performance factor compared to the serpentine channel. Finally, the thermal entropy generation dominated over the viscous entropy generation and its decrease with both Reynolds number and Prandtl number for raccoon and serpentine channels. This study focused on the heat transfer enhancement of the corrugated channels due to their importance in many industrial applications where the heat dissipation is critical to their work, including heat exchangers and heat sinks. Thus, the current numerical simulation primarily suggests utilizing the raccoon channel over the serpentine one, due to its higher thermal performance and nearly the same total entropy generation.
引用
收藏
页数:17
相关论文
共 50 条