Medical large language models are susceptible to targeted misinformation attacks

被引:3
|
作者
Han, Tianyu [1 ]
Nebelung, Sven [1 ]
Khader, Firas [1 ]
Wang, Tianci [1 ]
Mueller-Franzes, Gustav [1 ]
Kuhl, Christiane [1 ]
Foersch, Sebastian [2 ]
Kleesiek, Jens [3 ]
Haarburger, Christoph [4 ]
Bressem, Keno K. [5 ,6 ,7 ,8 ]
Kather, Jakob Nikolas [9 ,10 ,11 ]
Truhn, Daniel [1 ]
机构
[1] Univ Hosp Aachen, Dept Diag & Intervent Radiol, Aachen, Germany
[2] Univ Med Ctr Johannes Gutenberg, Inst Pathol, Mainz, Germany
[3] Univ Med Essen, Inst AI Med, Essen, Germany
[4] Ocumeda GmbH, Munich, Germany
[5] Charite Univ Med Berlin, Dept Radiol, Berlin, Germany
[6] Free Univ Berlin, Berlin, Germany
[7] Humboldt Univ, Berlin, Germany
[8] Charite Univ Med Berlin, Berlin Inst Hlth, Berlin, Germany
[9] Tech Univ Dresden, Else Kroener Fresenius Ctr Digital Hlth EKFZ, Dresden, Germany
[10] Univ Hosp Dresden, Dept Med 1, Dresden, Germany
[11] Univ Hosp Heidelberg, Natl Ctr Tumor Dis NCT, Med Oncol, Heidelberg, Germany
来源
NPJ DIGITAL MEDICINE | 2024年 / 7卷 / 01期
基金
美国国家卫生研究院; 欧洲研究理事会;
关键词
All Open Access; Gold;
D O I
10.1038/s41746-024-01282-7
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Large language models (LLMs) have broad medical knowledge and can reason about medical information across many domains, holding promising potential for diverse medical applications in the near future. In this study, we demonstrate a concerning vulnerability of LLMs in medicine. Through targeted manipulation of just 1.1% of the weights of the LLM, we can deliberately inject incorrect biomedical facts. The erroneous information is then propagated in the model's output while maintaining performance on other biomedical tasks. We validate our findings in a set of 1025 incorrect biomedical facts. This peculiar susceptibility raises serious security and trustworthiness concerns for the application of LLMs in healthcare settings. It accentuates the need for robust protective measures, thorough verification mechanisms, and stringent management of access to these models, ensuring their reliable and safe use in medical practice.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Reasoning with large language models for medical question answering
    Lucas, Mary M.
    Yang, Justin
    Pomeroy, Jon K.
    Yang, Christopher C.
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2024, 31 (09)
  • [32] Large language models in medical ethics: useful but not expert
    Ferrario, Andrea
    Biller-Andorno, Nikola
    JOURNAL OF MEDICAL ETHICS, 2024, 50 (09) : 653 - 654
  • [33] Large Language Models in Healthcare and Medical Domain: A Review
    Nazi, Zabir Al
    Peng, Wei
    INFORMATICS-BASEL, 2024, 11 (03):
  • [34] Evaluating large language models on medical evidence summarization
    Tang, Liyan
    Sun, Zhaoyi
    Idnay, Betina
    Nestor, Jordan G.
    Soroush, Ali
    Elias, Pierre A.
    Xu, Ziyang
    Ding, Ying
    Durrett, Greg
    Rousseau, Justin F.
    Weng, Chunhua
    Peng, Yifan
    NPJ DIGITAL MEDICINE, 2023, 6 (01)
  • [35] Evaluating large language models on medical evidence summarization
    Liyan Tang
    Zhaoyi Sun
    Betina Idnay
    Jordan G. Nestor
    Ali Soroush
    Pierre A. Elias
    Ziyang Xu
    Ying Ding
    Greg Durrett
    Justin F. Rousseau
    Chunhua Weng
    Yifan Peng
    npj Digital Medicine, 6
  • [36] Ethics of large language models in medicine and medical research
    Li, Hanzhou
    Moon, John T.
    Purkayastha, Saptarshi
    Celi, Leo Anthony
    Trivedi, Hari
    Gichoya, Judy W.
    LANCET DIGITAL HEALTH, 2023, 5 (06): : E333 - E335
  • [37] Poisoning medical knowledge using large language models
    Yang, Junwei
    Xu, Hanwen
    Mirzoyan, Srbuhi
    Chen, Tong
    Liu, Zixuan
    Liu, Zequn
    Ju, Wei
    Liu, Luchen
    Xiao, Zhiping
    Zhang, Ming
    Wang, Sheng
    NATURE MACHINE INTELLIGENCE, 2024, 6 (10) : 1156 - 1168
  • [38] An Epidemic Analogy Highlights the Importance of Targeted Community Engagement in Spaces Susceptible to Misinformation
    Osman, Aya
    Ogbunugafor, C. Brandon
    FRONTIERS IN COMMUNICATION, 2022, 7
  • [39] Adversarial attacks and defenses for large language models (LLMs): methods, frameworks & challenges
    Kumar, Pranjal
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2024, 13 (03)
  • [40] Evaluating the Validity of Word-level Adversarial Attacks with Large Language Models
    Zhou, Huichi
    Wang, Zhaoyang
    Wang, Hongtao
    Chen, Dongping
    Mu, Wenhan
    Zhang, Fangyuan
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: ACL 2024, 2024, : 4902 - 4922